Alternative expressions for the Riemann zeta and related functions at positive even integers and infinite sums involving zeros of Bessel and spherical Bessel functions of the first kind

被引:0
作者
Jog, C. S. [1 ]
机构
[1] Indian Inst Sci, Bangalore, India
关键词
Riemann zeta function at even integers; Zeros of Bessel functions;
D O I
10.1007/s13226-023-00377-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a Fourier-series based method for deriving alternative expressions for zeta(2m) and related functions such as the Dirichlet eta function, and the Bernoulli and Euler numbers. Using this method, we also present generalizations of known results for infinite sums involving the zeros of Bessel functions of the first kind.
引用
收藏
页码:451 / 462
页数:12
相关论文
共 7 条
[1]   Revisiting the Riemann Zeta function at positive even integers [J].
Alladi, Krishnaswami ;
Defant, Colin .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2018, 14 (07) :1849-1856
[2]  
Buchholz H., 1947, Z ANGEW MATH MECH, V25, P245
[3]  
Chen X., 1995, COLL MATH J, V26, P372
[4]   The Riemann Zeta Function With Even Arguments as Sums Over Integer Partitions [J].
Merca, Mircea .
AMERICAN MATHEMATICAL MONTHLY, 2017, 124 (06) :554-557
[5]  
proofwiki, WIKI RIEMANN ZETA FU
[6]  
Sneddon IN., 1960, Proc. Glasgow Math. Assoc, V4, P144
[7]  
wikipedia, WIKI TRIGONOMETRIC F