Feature Interpretation Using Generative Adversarial Networks (FIGAN): A Framework for Visualizing a CNN's Learned Features

被引:7
作者
Hasenstab, Kyle A. [1 ,2 ]
Huynh, Justin [2 ]
Masoudi, Samira [3 ]
Cunha, Guilherme M. [4 ]
Pazzani, Michael [3 ]
Hsiao, Albert [2 ,3 ]
机构
[1] San Diego State Univ, Dept Math & Stat, San Diego, CA 92182 USA
[2] Univ Calif San Diego, Dept Radiol, San Diego, CA 92093 USA
[3] Univ Calif San Diego, Halicioglu Data Sci Inst, San Diego, CA 92093 USA
[4] Univ Washington, Dept Radiol, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
Generative adversarial networks; Convolutional neural networks; Feature extraction; Visualization; Training data; Artificial intelligence; explainable AI; feature interpretation; generative adversarial networks;
D O I
10.1109/ACCESS.2023.3236575
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Convolutional neural networks (CNNs) are increasingly being explored and used for a variety of classification tasks in medical imaging, but current methods for post hoc explainability are limited. Most commonly used methods highlight portions of the input image that contribute to classification. While this provides a form of spatial localization relevant for focal disease processes, it may not be sufficient for co-localized or diffuse disease processes such as pulmonary edema or fibrosis. For the latter, new methods are required to isolate diffuse texture features employed by the CNN where localization alone is ambiguous. We therefore propose a novel strategy for eliciting explainability, called Feature Interpretation using Generative Adversarial Networks (FIGAN), which provides visualization of features used by a CNN for classification or regression. FIGAN uses a conditional generative adversarial network to synthesize images that span the range of a CNN's principal embedded features. We apply FIGAN to two previously developed CNNs and show that the resulting feature interpretations can clarify ambiguities within attention areas highlighted by existing explainability methods. In addition, we perform a series of experiments to study the effect of auxiliary segmentations, training sample size, and image resolution on FIGAN's ability to provide consistent and interpretable synthetic images.
引用
收藏
页码:5144 / 5160
页数:17
相关论文
共 46 条
[1]   Image2StyleGAN: How to Embed Images Into the StyleGAN Latent Space? [J].
Abdal, Rameen ;
Qin, Yipeng ;
Wonka, Peter .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :4431-4440
[2]   Assessing the Trustworthiness of Saliency Maps for Localizing Abnormalities in Medical Imaging [J].
Arun, Nishanth ;
Gaw, Nathan ;
Singh, Praveer ;
Chang, Ken ;
Aggarwal, Mehak ;
Chen, Bryan ;
Hoebel, Katharina ;
Gupta, Sharut ;
Patel, Jay ;
Gidwani, Mishka ;
Adebayo, Julius ;
Li, Matthew D. ;
Kalpathy-Cramer, Jayashree .
RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2021, 3 (06)
[3]   Problems with Saliency Maps [J].
Boccignone, Giuseppe ;
Cuculo, Vittorio ;
D'Amelio, Alessandro .
IMAGE ANALYSIS AND PROCESSING - ICIAP 2019, PT II, 2019, 11752 :35-46
[4]  
Chen X, 2016, ADV NEUR IN, V29
[5]   ResGANet: Residual group attention network for medical image classification and segmentation [J].
Cheng, Junlong ;
Tian, Shengwei ;
Yu, Long ;
Gao, Chengrui ;
Kang, Xiaojing ;
Ma, Xiang ;
Wu, Weidong ;
Liu, Shijia ;
Lu, Hongchun .
MEDICAL IMAGE ANALYSIS, 2022, 76
[6]   Convolutional neural network-automated hepatobiliary phase adequacy evaluation may optimize examination time [J].
Cunha, Guilherme Moura ;
Hasenstab, Kyle A. ;
Higaki, Atsushi ;
Wang, Kang ;
Delgado, Timo ;
Brunsing, Ryan L. ;
Schlein, Alexandra ;
Schwartzman, Armin ;
Hsiao, Albert ;
Sirlin, Claude B. ;
Fowler, Katie J. .
EUROPEAN JOURNAL OF RADIOLOGY, 2020, 124
[7]  
Zeiler MD, 2013, Arxiv, DOI arXiv:1311.2901
[8]   How obesity affects the cut-points for B-type natriuretic peptide in the diagnosis of acute heart failure: Results from the Breathing Not Properly Multinational Study [J].
Daniels, Lori B. ;
Clopton, Paul ;
Bhalla, Vikas ;
Krishnaswamy, Padma ;
Nowak, Richard M. ;
McCord, James ;
Hollander, Judd E. ;
Duc, Philippe ;
Omland, Torbjorn ;
Storrow, Alan B. ;
Abraham, William T. ;
Wu, Alan H. B. ;
Steg, Philippe G. ;
Westheim, Arne ;
Knudsen, Cathrine Wold ;
Perez, Alberto ;
Kazanegra, Radmila ;
Herrmann, Howard C. ;
McCullough, Peter A. ;
Maisel, Alan S. .
AMERICAN HEART JOURNAL, 2006, 151 (05) :999-1005
[9]   A review of explainable and interpretable AI with applications in COVID-19 imaging [J].
Fuhrman, Jordan D. ;
Gorre, Naveena ;
Hu, Qiyuan ;
Li, Hui ;
El Naqa, Issam ;
Giger, Maryellen L. .
MEDICAL PHYSICS, 2022, 49 (01) :1-14
[10]   CNN-based Deformable Registration Facilitates Fast and Accurate Air Trapping Measurements at Inspiratory and Expiratory CT (Jan, 10.1148/ryai.219003, 2022) [J].
Hasenstab, Kyle A. ;
Tabalon, Joseph ;
Yuan, Nancy ;
Retson, Tara ;
Hsiao, Albert .
RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2022, 4 (01)