Equivariant spectral triple for the quantum group Uq(2) for complex deformation parameters

被引:2
作者
Guin, Satyajit [1 ]
Saurabh, Bipul [2 ]
机构
[1] Indian Inst Technol, Dept Math & Stat, Kanpur 208016, Uttar Pradesh, India
[2] Indian Inst Technol, Palaj 382355, Gandhinagar, India
关键词
Compact quantum group; Spectral triple; Quantum unitary group; Equivariance; LOCAL INDEX FORMULA; DIRAC OPERATOR; HOMOGENEOUS SPACES; K-HOMOLOGY; ALGEBRAS; PRODUCTS;
D O I
10.1016/j.geomphys.2022.104748
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let q = vertical bar q vertical bar e(i pi theta) be a nonzero complex number such that vertical bar q vertical bar not equal 1 and consider the compact quantum group U-q(2). For theta is not an element of Q \ {0, 1}, we obtain the K-theory of the underlying C*-algebra C(U-q(2)). We construct a spectral triple on U-q(2) which is equivariant under its own comultiplication action. The spectral triple obtained here is even, 4(+)-summable, non-degenerate, and the Dirac operator acts on two copies of the L-2-space of U-q(2). The K-homology class of the associated Fredholm module is shown to be nontrivial. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:22
相关论文
共 15 条
[1]   Equivariant Spectral Triples for Homogeneous Spaces of the Compact Quantum Group Uq(2) [J].
Guin, Satyajit ;
Saurabh, Bipul .
MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2022, 25 (03)
[2]   Representations and classification of the compact quantum groups Uq(2) for complex deformation parameters [J].
Guin, Satyajit ;
Saurabh, Bipul .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2021, 32 (04)
[3]   Quantum E(2) groups for complex deformation parameters [J].
Rahaman, Atibur ;
Roy, Sutanu .
REVIEWS IN MATHEMATICAL PHYSICS, 2021, 33 (06)
[4]   A twisted spectral triple for quantum SU(2) [J].
Kaad, Jens ;
Senior, Roger .
JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (04) :731-739
[5]   On the Clebsch-Gordan coefficients for the quantum group Uq(2) [J].
Guin, Satyajit ;
Saurabh, Bipul .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2023, 133 (02)
[6]   The Compact Quantum Group Uq(2) (II) [J].
Xiao Xia Zhang .
Acta Mathematica Sinica, 2006, 22 :1221-1226
[7]   The compact quantum group Uq(2) (II) [J].
Zhang, Xiao Xia .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (04) :1221-1226
[8]   The compact quantum group Uq (2) I [J].
Zhang, XX ;
Zhao, EY .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 408 :244-258
[9]   Regularity and dimension spectrum of the equivariant spectral triple for the odd-dimensional quantum spheres [J].
Pal, Arupkumar ;
Sundar, S. .
JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2010, 4 (03) :389-439
[10]   Dirac operator and its cohomology for the quantum group Uq(sl2) [J].
Pandzic, Pavle ;
Somberg, Petr .
JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (04)