Equivariant spectral triple for the quantum group Uq(2) for complex deformation parameters

被引:2
|
作者
Guin, Satyajit [1 ]
Saurabh, Bipul [2 ]
机构
[1] Indian Inst Technol, Dept Math & Stat, Kanpur 208016, Uttar Pradesh, India
[2] Indian Inst Technol, Palaj 382355, Gandhinagar, India
关键词
Compact quantum group; Spectral triple; Quantum unitary group; Equivariance; LOCAL INDEX FORMULA; DIRAC OPERATOR; HOMOGENEOUS SPACES; K-HOMOLOGY; ALGEBRAS; PRODUCTS;
D O I
10.1016/j.geomphys.2022.104748
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let q = vertical bar q vertical bar e(i pi theta) be a nonzero complex number such that vertical bar q vertical bar not equal 1 and consider the compact quantum group U-q(2). For theta is not an element of Q \ {0, 1}, we obtain the K-theory of the underlying C*-algebra C(U-q(2)). We construct a spectral triple on U-q(2) which is equivariant under its own comultiplication action. The spectral triple obtained here is even, 4(+)-summable, non-degenerate, and the Dirac operator acts on two copies of the L-2-space of U-q(2). The K-homology class of the associated Fredholm module is shown to be nontrivial. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:22
相关论文
共 15 条