Soil erosion susceptibility mapping using ensemble machine learning models: A case study of upper Congo river sub-basin

被引:29
|
作者
Kulimushi, Luc Cimusa [1 ,2 ,11 ]
Bashagaluke, Janvier Bigabwa [1 ,2 ,3 ]
Prasad, Pankaj [4 ]
Heri-Kazi, Aim B. Heri-Kazi [1 ,5 ]
Kushwaha, Nand Lal [6 ]
Masroor, Md [7 ]
Choudhari, Pandurang [8 ]
Elbeltagi, Ahmed [9 ]
Sajjad, Haroon [7 ]
Mohammed, Safwan [10 ]
机构
[1] Univ Catholique Bukavu, Fac Agron, Bukavu, DEM REP CONGO
[2] Univ Catholique Bukavu, Ctr Re Etud Interdisciplinaires Appl Dev Durable C, Bukavu, DEM REP CONGO
[3] ISTD Kalehe, Inst Super Tech Dev, Kalehe, DEM REP CONGO
[4] CSIR Natl Inst Oceanog, Geol Oceanog Div, Panaji, Goa, India
[5] ISTD Mulungu, Inst Super Tech Dev, Mulungu, DEM REP CONGO
[6] ICAR Indian Agr Res Inst, Div Agr Engn, New Delhi 110012, India
[7] Jamia Millia Islamia, Fac Nat Sci, Dept Geog, New Delhi, India
[8] Univ Mumbai, Dept Geog, Mumbai, India
[9] Mansoura Univ, Fac Agr, Agr Engn Dept, Mansoura 35516, Egypt
[10] Univ Debrecen, Inst Land Use Tech & Prec Technol, Fac Agr & Food Sci & Environm Management, H-4032 Debrecen, Hungary
[11] Univ Catholique Bukavu, Bukavu, DEM REP CONGO
关键词
Erosion susceptibility mapping; Boruta approach; Random forest; Boosted regression trees; Ensemble machine learning; Congo basin; SUPPORT VECTOR MACHINE; RANDOM FOREST; LANDSLIDE SUSCEPTIBILITY; ROTATION FOREST; WATER EROSION; LAND-USE; RUNOFF; VARIABILITY; REGRESSION; CATCHMENT;
D O I
10.1016/j.catena.2022.106858
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Despite its large size, the Congo Basin (CB), which spans ten countries, has remained an area of particular interest for scientific discovery due to gaps in Earth science, environmental and hydrological research. This includes mapping soil erosion, which is the dominant form of land degradation in the basin, particularly severe in its upper part. For these reasons, the use of predictive machine learning algorithms (ML-ALs) rather than conventional models is necessary. In particular, the introduction of the ensemble model which is becoming widely popular, but is still little used throughout Africa. In this study, ensemble ML-ALs were applied and aimed at evaluating the predictive power of combining different algorithms such as Support Vector Machine (SVM), Boosted Regression Trees (BRT), Logit Boost (LB) and K-Nearest Neighbor (KNN) with Random Forest (RF) as the base classifier for erosion susceptibility mapping (ESM) in the Elila catchment located in the Upper Congo sub basin. To achieve this goal, 500 erosion sites were identified by the RUSLE model and Google Earth historical maps and then a field survey was conducted to validate the identified erosion sites. The input data were randomly divided into training and test datasets. Fifteen important features were selected using Boruta's approach to produce the ESMs. The accuracy of the models was evaluated using the area under the receiver operating characteristic curve (AUROC) and four statistical measures (sensitivity, accuracy, specificity and kappa index). The overall accuracy in terms of AUROC values shows that RF-BRT (87.26%) was superior to all other algorithms, followed by RF-SVM, RF-KNN, and RF-LB with AUROC values ranging from 86.51%, and 85.37%, to 84.21%, respectively. In conclusion, the results of this work can be used to control and prevent erosion throughout the CB, and the methodology of this work can be useful in similar geo-environmental characteristic sites.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Hydromorphological analysis of Upper Tapi River Sub-basin, India, using QSWAT model
    Munoth, Priyamitra
    Goyal, Rohit
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2020, 6 (04) : 2111 - 2127
  • [42] Comparing Convolutional Neural Network and Machine Learning Models in Landslide Susceptibility Mapping: A Case Study in Wenchuan County
    Zhang, Sikui
    Bai, Lin
    Li, Yuanwei
    Li, Weile
    Xie, Mingli
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2022, 10
  • [43] Spatiotemporal landslide susceptibility mapping using machine learning models: A case study from district Hattian Bala, NW Himalaya, Pakistan
    Khaliq, Ahmad Hammad
    Basharat, Muhammad
    Riaz, Malik Talha
    Riaz, Muhammad Tayyib
    Wani, Saad
    Al-Ansari, Nadhir
    Le, Long Ba
    Linh, Nguyen Thi Thuy
    AIN SHAMS ENGINEERING JOURNAL, 2023, 14 (03)
  • [44] Gully Erosion Susceptibility Assessment Using Different Machine Learning Algorithms: A Case Study of Shazand Watershed in Iran
    Mohammady, Majid
    Davudirad, Aliakbar
    ENVIRONMENTAL MODELING & ASSESSMENT, 2024, 29 (02) : 249 - 261
  • [45] Soil erosion susceptibility assessment using logistic regression, decision tree and random forest: study on the Mayurakshi river basin of Eastern India
    Ghosh, Abhishek
    Maiti, Ramkrishna
    ENVIRONMENTAL EARTH SCIENCES, 2021, 80 (08)
  • [46] Gully erosion susceptibility mapping using four machine learning methods in Luzinzi watershed, eastern Democratic Republic of Congo
    Chuma, Geant Basimine
    Mugumaarhahama, Yannick
    Mond, Jean Mubalama
    Bagula, Espoir Mukengere
    Ndeko, Adrien Byamungu
    Lucungu, Prince Baraka
    Karume, Katcho
    Mushagalusa, Gustave Nachigera
    Schmitz, Serge
    PHYSICS AND CHEMISTRY OF THE EARTH, 2023, 129
  • [47] Using Google Earth Engine and GIS for basin scale soil erosion risk assessment: A case study of Chambal river basin, central India
    Kumar, Rohit
    Deshmukh, Benidhar
    Kumar, Amit
    JOURNAL OF EARTH SYSTEM SCIENCE, 2022, 131 (04)
  • [48] Multi-geohazards susceptibility mapping based on machine learning-a case study in Jiuzhaigou, China
    Cao, Juan
    Zhang, Zhao
    Du, Jie
    Zhang, Liangliang
    Song, Yun
    Sun, Geng
    NATURAL HAZARDS, 2020, 102 (03) : 851 - 871
  • [49] Identification of topographic factors for gully erosion susceptibility and their spatial modelling using machine learning in the black soil region of Northeast China
    Huang, Donghao
    Su, Lin
    Fan, Haoming
    Zhou, Lili
    Tian, Yulu
    ECOLOGICAL INDICATORS, 2022, 143
  • [50] Gully erosion susceptibility mapping (GESM) using machine learning methods optimized by the multi-collinearity analysis and K-fold cross-validation
    Ghorbanzadeh, Omid
    Shahabi, Hejar
    Mirchooli, Fahimeh
    Valizadeh Kamran, Khalil
    Lim, Samsung
    Aryal, Jagannath
    Jarihani, Ben
    Blaschke, Thomas
    GEOMATICS NATURAL HAZARDS & RISK, 2020, 11 (01) : 1653 - 1678