Soil erosion susceptibility mapping using ensemble machine learning models: A case study of upper Congo river sub-basin

被引:28
|
作者
Kulimushi, Luc Cimusa [1 ,2 ,11 ]
Bashagaluke, Janvier Bigabwa [1 ,2 ,3 ]
Prasad, Pankaj [4 ]
Heri-Kazi, Aim B. Heri-Kazi [1 ,5 ]
Kushwaha, Nand Lal [6 ]
Masroor, Md [7 ]
Choudhari, Pandurang [8 ]
Elbeltagi, Ahmed [9 ]
Sajjad, Haroon [7 ]
Mohammed, Safwan [10 ]
机构
[1] Univ Catholique Bukavu, Fac Agron, Bukavu, DEM REP CONGO
[2] Univ Catholique Bukavu, Ctr Re Etud Interdisciplinaires Appl Dev Durable C, Bukavu, DEM REP CONGO
[3] ISTD Kalehe, Inst Super Tech Dev, Kalehe, DEM REP CONGO
[4] CSIR Natl Inst Oceanog, Geol Oceanog Div, Panaji, Goa, India
[5] ISTD Mulungu, Inst Super Tech Dev, Mulungu, DEM REP CONGO
[6] ICAR Indian Agr Res Inst, Div Agr Engn, New Delhi 110012, India
[7] Jamia Millia Islamia, Fac Nat Sci, Dept Geog, New Delhi, India
[8] Univ Mumbai, Dept Geog, Mumbai, India
[9] Mansoura Univ, Fac Agr, Agr Engn Dept, Mansoura 35516, Egypt
[10] Univ Debrecen, Inst Land Use Tech & Prec Technol, Fac Agr & Food Sci & Environm Management, H-4032 Debrecen, Hungary
[11] Univ Catholique Bukavu, Bukavu, DEM REP CONGO
关键词
Erosion susceptibility mapping; Boruta approach; Random forest; Boosted regression trees; Ensemble machine learning; Congo basin; SUPPORT VECTOR MACHINE; RANDOM FOREST; LANDSLIDE SUSCEPTIBILITY; ROTATION FOREST; WATER EROSION; LAND-USE; RUNOFF; VARIABILITY; REGRESSION; CATCHMENT;
D O I
10.1016/j.catena.2022.106858
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Despite its large size, the Congo Basin (CB), which spans ten countries, has remained an area of particular interest for scientific discovery due to gaps in Earth science, environmental and hydrological research. This includes mapping soil erosion, which is the dominant form of land degradation in the basin, particularly severe in its upper part. For these reasons, the use of predictive machine learning algorithms (ML-ALs) rather than conventional models is necessary. In particular, the introduction of the ensemble model which is becoming widely popular, but is still little used throughout Africa. In this study, ensemble ML-ALs were applied and aimed at evaluating the predictive power of combining different algorithms such as Support Vector Machine (SVM), Boosted Regression Trees (BRT), Logit Boost (LB) and K-Nearest Neighbor (KNN) with Random Forest (RF) as the base classifier for erosion susceptibility mapping (ESM) in the Elila catchment located in the Upper Congo sub basin. To achieve this goal, 500 erosion sites were identified by the RUSLE model and Google Earth historical maps and then a field survey was conducted to validate the identified erosion sites. The input data were randomly divided into training and test datasets. Fifteen important features were selected using Boruta's approach to produce the ESMs. The accuracy of the models was evaluated using the area under the receiver operating characteristic curve (AUROC) and four statistical measures (sensitivity, accuracy, specificity and kappa index). The overall accuracy in terms of AUROC values shows that RF-BRT (87.26%) was superior to all other algorithms, followed by RF-SVM, RF-KNN, and RF-LB with AUROC values ranging from 86.51%, and 85.37%, to 84.21%, respectively. In conclusion, the results of this work can be used to control and prevent erosion throughout the CB, and the methodology of this work can be useful in similar geo-environmental characteristic sites.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Application of Machine Learning Algorithms for Soil Erosion Susceptibility Estimation in Gumani River Basin, Eastern India
    Saikh, Nur Islam
    Sarkar, Debabrata
    Saha, Sunil
    Mondal, Prolay
    JOURNAL OF THE GEOLOGICAL SOCIETY OF INDIA, 2024, 100 (03) : 320 - 334
  • [22] Landslide susceptibility mapping: improvements in variable weights estimation through machine learning algorithms—a case study of upper Indus River Basin, Pakistan
    Iqra Imtiaz
    Muhammad Umar
    Muhammad Latif
    Rehan Ahmed
    Muhammad Azam
    Environmental Earth Sciences, 2022, 81
  • [23] Gully Erosion Susceptibility Mapping in Highly Complex Terrain Using Machine Learning Models
    Yang, Annan
    Wang, Chunmei
    Pang, Guowei
    Long, Yongqing
    Wang, Lei
    Cruse, Richard M.
    Yang, Qinke
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2021, 10 (10)
  • [24] Landslide Susceptibility Mapping Using RBFN-Based Ensemble Machine Learning Models
    Nguyen, Duc-Dam
    Tiep, Nguyen Viet
    Bui, Quynh-Anh Thi
    Van Le, Hiep
    Prakash, Indra
    Costache, Romulus
    Pandey, Manish
    Pham, Binh Thai
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2025, 142 (01): : 467 - 500
  • [25] Groundwater Salinity Susceptibility Mapping Using Classifier Ensemble and Bayesian Machine Learning Models
    Mosavi, Amirhosein
    Hosseini, Farzaneh Sajedi
    Choubin, Bahram
    Goodarzi, Massoud
    Dineva, Adrienn A.
    IEEE ACCESS, 2020, 8 : 145564 - 145576
  • [26] Application of geospatial technology coupled with fuzzy logic operations in mapping soil-erosion critical zones: the case of guder sub-basin, upper blue nile basin, ethiopia
    Mesfin Mamo Haile
    Applied Water Science, 2022, 12
  • [28] Porosity prediction using ensemble machine learning approaches: A case study from Upper Assam basin
    Kumar, Jitender
    Mukherjee, Bappa
    Sain, Kalachand
    JOURNAL OF EARTH SYSTEM SCIENCE, 2024, 133 (02)
  • [29] Landslide susceptibility mapping using ensemble machine learning methods: a case study in Lombardy, Northern Italy
    Xu, Qiongjie
    Yordanov, Vasil
    Amici, Lorenzo
    Brovelli, Maria Antonia
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2024, 17 (01)
  • [30] Soil erosion estimation using RUSLE: a case study of Bamnidhi sub basin
    Bhuyan P.K.
    Meher J.
    Mohanty L.
    ISH Journal of Hydraulic Engineering, 2024, 30 (02) : 273 - 280