A feasibility study on deep-neural-network-based dose-neutral dual-energy digital breast tomosynthesis

被引:1
作者
Kim, Hyeongseok [1 ]
Lee, Hoyeon [2 ,3 ]
Lee, Seoyoung [4 ]
Choi, Young-Wook [5 ]
Choi, Young Jin [5 ]
Kim, Kee Hyun [5 ]
Seo, Wontaek [6 ]
Shin, Choul Woo [6 ]
Cho, Seungryong [1 ,4 ,7 ,8 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, KAIST Inst Artificial Intelligence, Daejeon 34141, South Korea
[2] Massachusetts Gen Hosp, Dept Radiat Oncol, Boston, MA 02114 USA
[3] Harvard Med Sch, Boston, MA 02115 USA
[4] Korea Adv Inst Sci & Technol KAIST, Dept Nucl & Quantum Engn, Daejeon, South Korea
[5] Korea Electrotechnol Res Inst KERI, Ansan, South Korea
[6] DRTECH, Seongnam, South Korea
[7] Korea Adv Inst Sci & Technol KAIST, KAIST Inst Hlth Sci & Technol, Daejeon, South Korea
[8] Korea Adv Inst Sci & Technol KAIST, KAIST Inst IT Convergence, Daejeon, South Korea
基金
新加坡国家研究基金会;
关键词
deep learning; digital breast tomosynthesis; dual-energy x-ray imaging; image reconstruction; material decomposition; X-RAY; DIAGNOSTIC PERFORMANCE; IMAGE-RECONSTRUCTION; DENSE BREASTS; MAMMOGRAPHY; OPTIMIZATION; TOMOGRAPHY; SIMULATION; ACCURACY; QUALITY;
D O I
10.1002/mp.16071
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background Diagnostic performance based on x-ray breast imaging is subject to breast density. Although digital breast tomosynthesis (DBT) is reported to outperform conventional mammography in denser breasts, mass detection and malignancy characterization are often considered challenging yet. Purpose As an improved diagnostic solution to the dense breast cases, we propose a dual-energy DBT imaging technique that enables breast compositional imaging at comparable scanning time and patient dose compared to the conventional single-energy DBT. Methods The proposed dual-energy DBT acquires projection data by alternating two different energy spectra. Then, we synthesize unmeasured projection data using a deep neural network that exploits the measured projection data and adjacent projection data obtained under the other x-ray energy spectrum. For material decomposition, we estimate partial path lengths of an x-ray through water, lipid, and protein from the measured and the synthesized projection data with the object thickness information. After material decomposition in the projection domain, we reconstruct material-selective DBT images. The deep neural network is trained with the numerical breast phantoms. A pork meat phantom is scanned with a prototype dual-energy DBT system to demonstrate the feasibility of the proposed imaging method. Results The developed deep neural network successfully synthesized missing projections. Material-selective images reconstructed from the synthesized data present comparable compositional contrast of the cancerous masses compared with those from the fully measured data. Conclusions The proposed dual-energy DBT scheme is expected to substantially contribute to enhancing mass malignancy detection accuracy particularly in dense breasts.
引用
收藏
页码:791 / 807
页数:17
相关论文
共 67 条
[1]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[2]   Mammography and breast tomosynthesis simulator for virtual clinical trials [J].
Badal, Andreu ;
Sharma, Diksha ;
Graff, Christian G. ;
Zeng, Rongping ;
Badano, Aldo .
COMPUTER PHYSICS COMMUNICATIONS, 2021, 261
[3]  
Badawy A, 2018, J COMPUT SOC SCI, V1, P453, DOI [10.1007/s42001-018-0015-z, 10.1001/jamanetworkopen.2018.5474]
[4]   An algorithm for constrained one-step inversion of spectral CT data [J].
Barber, Rina Foygel ;
Sidky, Emil Y. ;
Schmidt, Taly Gilat ;
Pan, Xiaochuan .
PHYSICS IN MEDICINE AND BIOLOGY, 2016, 61 (10) :3784-3818
[5]   Safe Use of Contrast Media: What the Radiologist Needs to Know [J].
Beckett, Katrina R. ;
Moriarity, Andrew K. ;
Langer, Jessica M. .
RADIOGRAPHICS, 2015, 35 (06) :1738-1750
[6]   Frequently asked questions: Iodinated contrast agents [J].
Bettmann, M .
RADIOGRAPHICS, 2004, 24 :S3-S10
[7]   Mammographic density and the risk and detection of breast cancer [J].
Boyd, Norman F. ;
Guo, Helen ;
Martin, Lisa J. ;
Sun, Limei ;
Stone, Jennifer ;
Fishell, Eve ;
Jong, Roberta A. ;
Hislop, Greg ;
Chiarelli, Anna ;
Minkin, Salomon ;
Yaffe, Martin J. .
NEW ENGLAND JOURNAL OF MEDICINE, 2007, 356 (03) :227-236
[8]  
Carney PA, 2003, ANN INTERN MED, V138, P168, DOI 10.7326/0003-4819-138-3-200302040-00008
[9]   Digital Breast Tomosynthesis with Synthesized Two-Dimensional Images versus Full-Field Digital Mammography for Population Screening: Outcomes from the Verona Screening Program [J].
Caumo, Francesca ;
Zorzi, Manuel ;
Brunelli, Silvia ;
Romanucci, Giovanna ;
Rella, Rossella ;
Cugola, Loredana ;
Bricolo, Paola ;
Fedato, Chiara ;
Montemezzi, Stefania ;
Houssami, Nehmat .
RADIOLOGY, 2018, 287 (01) :37-46
[10]  
Charyyev Serdar, 2022, Br J Radiol, V95, P20210644, DOI 10.1259/bjr.20210644