Phase Diagram of the Two-Flavor Schwinger Model at Zero Temperature

被引:15
作者
Dempsey, Ross [1 ]
Klebanov, Igor R. [1 ,2 ]
Pufu, Silviu S. [1 ,2 ]
Sogaard, Benjamin T. [1 ]
Zan, Bernardo [1 ]
机构
[1] Princeton Univ, Joseph Henry Labs, Princeton, NJ 08544 USA
[2] Princeton Univ, Princeton Ctr Theoret Sci, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
CHIRAL-SYMMETRY; LATTICE; BOSONIZATION;
D O I
10.1103/PhysRevLett.132.031603
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We examine the phase structure of the two -flavor Schwinger model as a function of the theta angle and the two masses, m1 and m2. In particular, we find interesting effects at theta = pi: along the SU(2)-invariant line m1 = m2 = m, in the regime where m is much smaller than the charge g, the theory undergoes logarithmic renormalization group flow of the Berezinskii-Kosterlitz-Thouless type. As a result, dimensional transmutation takes place, leading to a nonperturbatively small mass gap similar to e-Ag2=m2. The SU(2)-invariant line lies within a region of the phase diagram where the charge conjugation symmetry is spontaneously broken and whose boundaries we determine numerically. Our numerical results are obtained using the Hamiltonian lattice gauge formulation that includes the mass shift mlat = m - g2a=4 dictated by the discrete chiral symmetry.
引用
收藏
页数:7
相关论文
共 44 条
[1]   ON THE REALIZATION OF CHIRAL SYMMETRY IN (1 + 1) DIMENSIONS [J].
AFFLECK, I .
NUCLEAR PHYSICS B, 1986, 265 (03) :448-468
[2]   Flow-based sampling in the lattice Schwinger model at criticality [J].
Albergo, Michael S. ;
Boyda, Denis ;
Cranmer, Kyle ;
Hackett, Daniel C. ;
Kanwar, Gurtej ;
Racaniere, Sebastien ;
Rezende, Danilo J. ;
Romero-Lopez, Fernando ;
Shanahan, Phiala E. ;
Urban, Julian M. .
PHYSICAL REVIEW D, 2022, 106 (01)
[3]   RENORMALIZATION GROUP-ANALYSIS OF THE PHASE-TRANSITION IN THE 2D COULOMB GAS, SINE-GORDON THEORY AND XY-MODEL [J].
AMIT, DJ ;
GOLDSCHMIDT, YY ;
GRINSTEIN, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (02) :585-620
[4]   BOSONIZATION OF SU(N) THIRRING MODELS [J].
BANKS, T ;
HORN, D ;
NEUBERGER, H .
NUCLEAR PHYSICS B, 1976, 108 (01) :119-129
[5]   STRONG-COUPLING CALCULATIONS OF LATTICE GAUGE THEORIES - (1+1)-DIMENSIONAL EXERCISES [J].
BANKS, T ;
SUSSKIND, L ;
KOGUT, J .
PHYSICAL REVIEW D, 1976, 13 (04) :1043-1053
[6]   The mass spectrum of the Schwinger model with matrix product states [J].
Banuls, M. C. ;
Cichy, K. ;
Cirac, J. I. ;
Jansen, K. .
JOURNAL OF HIGH ENERGY PHYSICS, 2013, (11)
[7]   Simulating lattice gauge theories within quantum technologies [J].
Banuls, Mari Carmen ;
Blatt, Rainer ;
Catani, Jacopo ;
Celi, Alessio ;
Cirac, Juan Ignacio ;
Dalmonte, Marcello ;
Fallani, Leonardo ;
Jansen, Karl ;
Lewenstein, Maciej ;
Montangero, Simone ;
Muschik, Christine A. ;
Reznik, Benni ;
Rico, Enrique ;
Tagliacozzo, Luca ;
Van Acoleyen, Karel ;
Verstraete, Frank ;
Wiese, Uwe-Jens ;
Wingate, Matthew ;
Zakrzewski, Jakub ;
Zoller, Peter .
EUROPEAN PHYSICAL JOURNAL D, 2020, 74 (08)
[8]   On the correspondence between the strongly coupled 2-flavor lattice Schwinger model and the Heisenberg antiferromagnetic chain [J].
Berruto, F ;
Grignani, G ;
Semenoff, GW ;
Sodano, O .
ANNALS OF PHYSICS, 1999, 275 (02) :254-296
[9]   Density matrix renormalization group approach to the massive Schwinger model [J].
Byrnes, TMR ;
Sriganesh, P ;
Bursill, RJ ;
Hamer, CJ .
PHYSICAL REVIEW D, 2002, 66 (01) :130021-1300214
[10]   Density matrix renormalisation group approach to the massive Schwinger model [J].
Byrnes, TMR ;
Sriganesh, P ;
Bursill, RJ ;
Hamer, CJ .
NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2002, 109 :202-206