STABILITY FOR TIME-DOMAIN ELASTIC WAVE EQUATIONS

被引:0
作者
Chen, Bochao [1 ]
Gao, Yixian [1 ]
Ji, Shuguan [1 ]
Liu, Yang [1 ]
机构
[1] Northeast Normal Univ, Ctr Math & Interdisciplinary Sci, Sch Math & Stat, Changchun 130024, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
elastic wave equations; boundary control method; complex geometric optics solu-tions; Carleman estimate; BOUNDARY-VALUE PROBLEM; LIPSCHITZ STABILITY; STABILIZATION; UNIQUENESS; CONTROLLABILITY; INVERSES; THEOREM;
D O I
10.1137/22M1508546
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the inverse scattering problem involving the timedomain elastic wave equations in a bounded d-dimensional domain. First, an explicit formula for the density reconstruction is established by means of the Dirichlet-to-Neumann operator. The reconstruction is mainly based on the modified boundary control method and complex geometric optics solutions for the elastic wave. Next, the stable observability is obtained by a Carleman estimate. Finally, the stability for the density is presented by the connect operator.
引用
收藏
页码:433 / 453
页数:21
相关论文
共 29 条
  • [1] Boundary observability, controllability, and stabilization of linear elastodynamic systems
    Alabau, F
    Komornik, V
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 37 (02) : 521 - 542
  • [2] Time-Domain Analysis of an Acoustic-Elastic Interaction Problem
    Bao, Gang
    Gao, Yixian
    Li, Peijun
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2018, 229 (02) : 835 - 884
  • [3] UNIQUENESS FOR INVERSE ELASTIC MEDIUM PROBLEMS
    Barcelo, J. A.
    Folch-Gabayet, M.
    Perez-Esteva, S.
    Ruiz, A.
    Vilela, M. C.
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (04) : 3939 - 3962
  • [4] SHARP SUFFICIENT CONDITIONS FOR THE OBSERVATION, CONTROL, AND STABILIZATION OF WAVES FROM THE BOUNDARY
    BARDOS, C
    LEBEAU, G
    RAUCH, J
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1992, 30 (05) : 1024 - 1065
  • [5] BARDOS C., 1996, Singularities and Oscillations, IMA Volumes in Mathematics and Its Applications, V91, P1
  • [6] Lipschitz stability for an inverse hyperbolic problem of determining two coefficients by a finite number of observations
    Beilina, L.
    Cristofol, M.
    Li, S.
    Yamamoto, M.
    [J]. INVERSE PROBLEMS, 2018, 34 (01)
  • [7] The dynamical Lame system: Regularity of solutions, boundary controllability and boundary data continuation
    Belishev, MI
    Lasiecka, I
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2002, 8 : 143 - 167
  • [8] BELISHEV MI, 1987, DOKL AKAD NAUK SSSR+, V297, P524
  • [9] Uniqueness and Lipschitz stability of an inverse boundary value problem for time-harmonic elastic waves
    Beretta, Elena
    de Hoop, Maarten V.
    Francini, Elisa
    Vessella, Sergio
    Zhai, Jian
    [J]. INVERSE PROBLEMS, 2017, 33 (03)
  • [10] INVERSE BOUNDARY VALUE PROBLEM FOR THE HELMHOLTZ EQUATION: QUANTITATIVE CONDITIONAL LIPSCHITZ STABILITY ESTIMATES
    Beretta, Elena
    De Hoop, Maarten V.
    Faucher, Florian
    Scherzer, Otmar
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2016, 48 (06) : 3962 - 3983