STABILITY FOR TIME-DOMAIN ELASTIC WAVE EQUATIONS

被引:1
作者
Chen, Bochao [1 ]
Gao, Yixian [1 ]
Ji, Shuguan [1 ]
Liu, Yang [1 ]
机构
[1] Northeast Normal Univ, Ctr Math & Interdisciplinary Sci, Sch Math & Stat, Changchun 130024, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
elastic wave equations; boundary control method; complex geometric optics solu-tions; Carleman estimate; BOUNDARY-VALUE PROBLEM; LIPSCHITZ STABILITY; STABILIZATION; UNIQUENESS; CONTROLLABILITY; INVERSES; THEOREM;
D O I
10.1137/22M1508546
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the inverse scattering problem involving the timedomain elastic wave equations in a bounded d-dimensional domain. First, an explicit formula for the density reconstruction is established by means of the Dirichlet-to-Neumann operator. The reconstruction is mainly based on the modified boundary control method and complex geometric optics solutions for the elastic wave. Next, the stable observability is obtained by a Carleman estimate. Finally, the stability for the density is presented by the connect operator.
引用
收藏
页码:433 / 453
页数:21
相关论文
共 29 条
[1]   Boundary observability, controllability, and stabilization of linear elastodynamic systems [J].
Alabau, F ;
Komornik, V .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 37 (02) :521-542
[2]   Time-Domain Analysis of an Acoustic-Elastic Interaction Problem [J].
Bao, Gang ;
Gao, Yixian ;
Li, Peijun .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2018, 229 (02) :835-884
[3]   UNIQUENESS FOR INVERSE ELASTIC MEDIUM PROBLEMS [J].
Barcelo, J. A. ;
Folch-Gabayet, M. ;
Perez-Esteva, S. ;
Ruiz, A. ;
Vilela, M. C. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (04) :3939-3962
[4]   SHARP SUFFICIENT CONDITIONS FOR THE OBSERVATION, CONTROL, AND STABILIZATION OF WAVES FROM THE BOUNDARY [J].
BARDOS, C ;
LEBEAU, G ;
RAUCH, J .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1992, 30 (05) :1024-1065
[5]  
BARDOS C., 1996, Singularities and Oscillations, IMA Volumes in Mathematics and Its Applications, V91, P1
[6]   Lipschitz stability for an inverse hyperbolic problem of determining two coefficients by a finite number of observations [J].
Beilina, L. ;
Cristofol, M. ;
Li, S. ;
Yamamoto, M. .
INVERSE PROBLEMS, 2018, 34 (01)
[7]   The dynamical Lame system: Regularity of solutions, boundary controllability and boundary data continuation [J].
Belishev, MI ;
Lasiecka, I .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2002, 8 :143-167
[8]  
BELISHEV MI, 1987, DOKL AKAD NAUK SSSR+, V297, P524
[9]   Uniqueness and Lipschitz stability of an inverse boundary value problem for time-harmonic elastic waves [J].
Beretta, Elena ;
de Hoop, Maarten V. ;
Francini, Elisa ;
Vessella, Sergio ;
Zhai, Jian .
INVERSE PROBLEMS, 2017, 33 (03)
[10]   INVERSE BOUNDARY VALUE PROBLEM FOR THE HELMHOLTZ EQUATION: QUANTITATIVE CONDITIONAL LIPSCHITZ STABILITY ESTIMATES [J].
Beretta, Elena ;
De Hoop, Maarten V. ;
Faucher, Florian ;
Scherzer, Otmar .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2016, 48 (06) :3962-3983