Provenance Tracking for End-to-End Machine Learning Pipelines

被引:1
|
作者
Grafberger, Stefan [1 ]
Groth, Paul [2 ]
Schelter, Sebastian [2 ]
机构
[1] Univ Amsterdam, AIRLab, Amsterdam, Netherlands
[2] Univ Amsterdam, Amsterdam, Netherlands
关键词
D O I
10.1145/3543873.3587557
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
引用
收藏
页码:1512 / 1512
页数:1
相关论文
共 50 条
  • [21] Exploiting machine learning for end-to-end drug discovery and development
    Ekins, Sean
    Puhl, Ana C.
    Zorn, Kimberley M.
    Lane, Thomas R.
    Russo, Daniel P.
    Klein, Jennifer J.
    Hickey, Anthony J.
    Clark, Alex M.
    NATURE MATERIALS, 2019, 18 (05) : 435 - 441
  • [22] EighthWorkshop on Data Management for End-to-End Machine Learning (DEEM)
    Hulsebos, Madelon
    Interlandi, Matteo
    Shankar, Shreya
    COMPANION OF THE 2024 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, SIGMOD-COMPANION 2024, 2024, : 651 - 652
  • [23] Exploiting machine learning for end-to-end drug discovery and development
    Sean Ekins
    Ana C. Puhl
    Kimberley M. Zorn
    Thomas R. Lane
    Daniel P. Russo
    Jennifer J. Klein
    Anthony J. Hickey
    Alex M. Clark
    Nature Materials, 2019, 18 : 435 - 441
  • [24] Analysis of the Effect of Sensors for End-to-End Machine Learning Odometry
    Rodriguez-Peral, Carlos Marquez
    Pena, Dexmont
    COMPUTER VISION - ECCV 2018 WORKSHOPS, PT VI, 2019, 11134 : 82 - 95
  • [25] End-to-End Synthesis of Dynamically Controlled Machine Learning Accelerators
    Curzel, Serena
    Agostini, Nicolas Bohm
    Castellana, Vito Giovanni
    Minutoli, Marco
    Limaye, Ankur
    Manzano, Joseph
    Zhang, Jeff
    Brooks, David
    Wei, Gu-Yeon
    Ferrandi, Fabrizio
    Tumeo, Antonino
    IEEE TRANSACTIONS ON COMPUTERS, 2022, 71 (12) : 3074 - 3087
  • [26] S2Logger: End-to-End Data Tracking Mechanism for Cloud Data Provenance
    Suen, Chun Hui
    Ko, Ryan K. L.
    Tan, Yu Shyang
    Jagadpramana, Peter
    Lee, Bu Sung
    2013 12TH IEEE INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (TRUSTCOM 2013), 2013, : 594 - 602
  • [27] End-to-End Learning from Noisy Crowd to Supervised Machine Learning Models
    Younesian, Taraneh
    Hong, Chi
    Ghiassi, Amirmasoud
    Birke, Robert
    Chen, Lydia Y.
    2020 IEEE SECOND INTERNATIONAL CONFERENCE ON COGNITIVE MACHINE INTELLIGENCE (COGMI 2020), 2020, : 17 - 26
  • [28] Tracking Counterfeit Cryptocurrency End-to-end
    Gao, Bingyu
    Wang, Haoyu
    Xia, Pengcheng
    Wu, Siwei
    Zhou, Yajin
    Luo, Xiapu
    Tyson, Gareth
    PROCEEDINGS OF THE ACM ON MEASUREMENT AND ANALYSIS OF COMPUTING SYSTEMS, 2020, 4 (03)
  • [29] A Comparison of End-to-End Decision Forest Inference Pipelines
    Guan, Hong
    Masood, Saif
    Dwarampudi, Mahidhar
    Gunda, Venkatesh
    Min, Hong
    Yu, Lei
    Nag, Soham
    Zou, Jia
    PROCEEDINGS OF THE 2023 ACM SYMPOSIUM ON CLOUD COMPUTING, SOCC 2023, 2023, : 200 - 215
  • [30] DLBooster: Boosting End-to-End Deep Learning Workflows with Offloading Data Preprocessing Pipelines
    Cheng, Yang
    Li, Dan
    Guo, Zhiyuan
    Jiang, Binyao
    Lin, Jiaxin
    Fan, Xi
    Geng, Jinkun
    Yu, Xinyi
    Bai, Wei
    Qu, Lei
    Shu, Ran
    Cheng, Peng
    Xiong, Yongqiang
    Wu, Jianping
    PROCEEDINGS OF THE 48TH INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING (ICPP 2019), 2019,