Computational event-driven vision sensors for in-sensor spiking neural networks

被引:125
作者
Zhou, Yue [1 ,2 ,3 ]
Fu, Jiawei [2 ]
Chen, Zirui [2 ]
Zhuge, Fuwei [4 ]
Wang, Yasai [2 ,3 ]
Yan, Jianmin [1 ,3 ]
Ma, Sijie [1 ,3 ]
Xu, Lin [1 ,3 ]
Yuan, Huanmei [5 ,6 ]
Chan, Mansun [5 ,6 ]
Miao, Xiangshui [2 ]
He, Yuhui [2 ]
Chai, Yang [1 ,3 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Phys, Hong Kong, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Integrated Circuits, Wuhan, Peoples R China
[3] Hong Kong Polytech Univ, Joint Res Ctr Microelect, Hong Kong, Peoples R China
[4] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, Wuhan, Peoples R China
[5] Hong Kong Univ Sci & Technol, Dept Elect & Comp Engn, Hong Kong, Peoples R China
[6] InnoHK Ctr, ACCESS AI Chip Ctr Emerging Smart Syst, Hong Kong Sci Pk, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
EXTRACTION; LAYER;
D O I
10.1038/s41928-023-01055-2
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Neuromorphic event-based image sensors capture only the dynamic motion in a scene, which is then transferred to computation units for motion recognition. This approach, however, leads to time latency and can be power consuming. Here we report computational event-driven vision sensors that capture and directly convert dynamic motion into programmable, sparse and informative spiking signals. The sensors can be used to form a spiking neural network for motion recognition. Each individual vision sensor consists of two parallel photodiodes with opposite polarities and has a temporal resolution of 5 mu s. In response to changes in light intensity, the sensors generate spiking signals with different amplitudes and polarities by electrically programming their individual photoresponsivity. The non-volatile and multilevel photoresponsivity of the vision sensors can emulate synaptic weights and can be used to create an in-sensor spiking neural network. Our computational event-driven vision sensor approach eliminates redundant data during the sensing process, as well as the need for data transfer between sensors and computation units. A spiking neural network that is based on event-driven vision sensors can be created using two parallel photodiodes of opposite polarities that output programmable spike signal trains in response to changes in light intensity.
引用
收藏
页码:870 / 878
页数:9
相关论文
共 47 条
[1]   True North: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip [J].
Akopyan, Filipp ;
Sawada, Jun ;
Cassidy, Andrew ;
Alvarez-Icaza, Rodrigo ;
Arthur, John ;
Merolla, Paul ;
Imam, Nabil ;
Nakamura, Yutaka ;
Datta, Pallab ;
Nam, Gi-Joon ;
Taba, Brian ;
Beakes, Michael ;
Brezzo, Bernard ;
Kuang, Jente B. ;
Manohar, Rajit ;
Risk, William P. ;
Jackson, Bryan ;
Modha, Dharmendra S. .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2015, 34 (10) :1537-1557
[2]   Visual Pattern Extraction Using Energy-Efficient "2-PCM Synapse" Neuromorphic Architecture [J].
Bichler, Olivier ;
Suri, Manan ;
Querlioz, Damien ;
Vuillaume, Dominique ;
DeSalvo, Barbara ;
Gamrat, Christian .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2012, 59 (08) :2206-2214
[3]   Extraction of temporally correlated features from dynamic vision sensors with spike-timing-dependent plasticity [J].
Bichler, Olivier ;
Querlioz, Damien ;
Thorpe, Simon J. ;
Bourgoin, Jean-Philippe ;
Gamrat, Christian .
NEURAL NETWORKS, 2012, 32 :339-348
[4]   Indirect and direct training of spiking neural networks for end-to-end control of a lane-keeping vehicle [J].
Bing, Zhenshan ;
Meschede, Claus ;
Chen, Guang ;
Knoll, Alois ;
Huang, Kai .
NEURAL NETWORKS, 2020, 121 :21-36
[5]   Monolayer diodes light up [J].
Bratschitsch, Rudolf .
NATURE NANOTECHNOLOGY, 2014, 9 (04) :247-248
[6]   Photocurrent generation with two-dimensional van der Waals semiconductors [J].
Buscema, Michele ;
Island, Joshua O. ;
Groenendijk, Dirk J. ;
Blanter, Sofya I. ;
Steele, Gary A. ;
van der Zant, Herre S. J. ;
Castellanos-Gomez, Andres .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (11) :3691-3718
[7]   Silicon photodiodes that multiply [J].
Chai, Yang .
NATURE ELECTRONICS, 2022, 5 (08) :483-484
[8]   In-sensor computing for machine vision [J].
Chai, Yang .
NATURE, 2020, 579 (7797) :32-33
[9]   Event-Based Neuromorphic Vision for Autonomous Driving: A Paradigm Shift for Bio-Inspired Visual Sensing and Perception [J].
Chen, Guang ;
Cao, Hu ;
Conradt, Jorg ;
Tang, Huajin ;
Rohrbein, Florian ;
Knoll, Alois .
IEEE SIGNAL PROCESSING MAGAZINE, 2020, 37 (04) :34-49
[10]   Logic gates based on neuristors made from two-dimensional materials [J].
Chen, Huawei ;
Xue, Xiaoyong ;
Liu, Chunsen ;
Fang, Jinbei ;
Wang, Zhen ;
Wang, Jianlu ;
Zhang, David Wei ;
Hu, Weida ;
Zhou, Peng .
NATURE ELECTRONICS, 2021, 4 (06) :399-404