On the number of stable solutions in the Kuramoto model

被引:1
作者
Arenas, Alex [1 ,2 ]
Garijo, Antonio [1 ]
Gomez, Sergio [1 ]
Villadelprat, Jordi [1 ]
机构
[1] Univ Rovira i Virgili, Dept Engn Informat & Matematiques, Tarragona 430007, Spain
[2] Pacific Northwest Natl Lab, 902 Battelle Blvd, Richland, WA 99354 USA
关键词
SYNCHRONIZATION; NETWORKS;
D O I
10.1063/5.0161977
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a system of n coupled oscillators described by the Kuramoto model with the dynamics given by (theta) over dot = omega + Kf(theta). In this system, an equilibrium solution theta* is considered stable when omega + Kf(theta*) = 0, and the Jacobian matrix Df(theta*) has a simple eigenvalue of zero, indicating the presence of a direction in which the oscillators can adjust their phases. Additionally, the remaining eigenvalues of Df(theta*) are negative, indicating stability in orthogonal directions. A crucial constraint imposed on the equilibrium solution is that vertical bar Gamma(theta*)vertical bar <= pi, where vertical bar Gamma(theta*)vertical bar represents the length of the shortest arc on the unit circle that contains the equilibrium solution theta*. We provide a proof that there exists a unique solution satisfying the aforementioned stability criteria. This analysis enhances our understanding of the stability and uniqueness of these solutions, offering valuable insights into the dynamics of coupled oscillators in this system. (c) 2023 Author(s).
引用
收藏
页数:8
相关论文
共 24 条
  • [1] The Kuramoto model:: A simple paradigm for synchronization phenomena
    Acebrón, JA
    Bonilla, LL
    Vicente, CJP
    Ritort, F
    Spigler, R
    [J]. REVIEWS OF MODERN PHYSICS, 2005, 77 (01) : 137 - 185
  • [2] [Anonymous], 2003, Chemical Oscillations, Waves, and Turbulence, ser. Dover books on chemistry
  • [3] Synchronization in complex networks
    Arenas, Alex
    Diaz-Guilera, Albert
    Kurths, Jurgen
    Moreno, Yamir
    Zhou, Changsong
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03): : 93 - 153
  • [4] GEOMETRIC CRITICAL-POINT ANALYSIS OF LOSSLESS POWER SYSTEM MODELS
    BAILLIEUL, J
    BYRNES, CI
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1982, 29 (11): : 724 - 727
  • [5] Generative models of cortical oscillations: neurobiological implications of the Kuramoto model
    Breakspear, Michael
    Heitmann, Stewart
    Daffertshofer, Andreas
    [J]. FRONTIERS IN HUMAN NEUROSCIENCE, 2010, 4
  • [6] Fully synchronous solutions and the synchronization phase transition for the finite-N Kuramoto model
    Bronski, Jared C.
    DeVille, Lee
    Park, Moon Jip
    [J]. CHAOS, 2012, 22 (03)
  • [7] Ditto W, 2002, NATURE, V415, P736, DOI 10.1038/415736b
  • [8] Synchronization in complex networks of phase oscillators: A survey
    Doerfler, Florian
    Bullo, Francesco
    [J]. AUTOMATICA, 2014, 50 (06) : 1539 - 1564
  • [9] Analysis of a power grid using a Kuramoto-like model
    Filatrella, G.
    Nielsen, A. H.
    Pedersen, N. F.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2008, 61 (04) : 485 - 491
  • [10] Conformists and contrarians in a Kuramoto model with identical natural frequencies
    Hong, Hyunsuk
    Strogatz, Steven H.
    [J]. PHYSICAL REVIEW E, 2011, 84 (04):