Anterior mediastinal nodular lesion segmentation from chest computed tomography imaging using UNet based neural network with attention mechanisms

被引:1
作者
Wang, Yi [1 ]
Jeong, Won Gi [2 ]
Zhang, Hao [3 ]
Choi, Younhee [1 ]
Jin, Gong Yong [4 ]
Ko, Seok-Bum [1 ]
机构
[1] Univ Saskatchewan, Dept Elect & Comp Engn, 57 Campus Dr, Saskatoon, SK, Canada
[2] Chonnam Natl Univ, Hwasun Hosp, Dept Radiol, Hwasun, South Korea
[3] Ocean Univ China, Fac Informat Sci & Engn, Qingdao, Peoples R China
[4] Jeonbuk Natl Univ, Biomed Res Inst,Jeonbuk Natl Univ Hosp, Dept Radiol,Med Sch, Res Inst Clin Med, 20 Geonji Ro, Jeonju, South Korea
基金
加拿大自然科学与工程研究理事会;
关键词
Anterior mediastinal nodular lesion segmentation; Computed tomography imaging; UNet; Self-attention; Convolutional block attention module; CT;
D O I
10.1007/s11042-023-17210-y
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Automated detection of anterior mediastinal nodular lesions (AMLs) has significance for clinical usage as it is challenging for radiologists to accurately identify AMLs from chest computed tomography (CT) imaging due to various factors, including poor resolution, variations in intensity and the similarity of the AMLs to other tissues. To assist radiologists in AML detection from chest CT imaging, a UNet-based computer-aided detection (CADe) system is proposed to segment AMLs from slice images of the chest CT scans. The proposed network adopts a modified UNet architecture. To guide the proposed network to selectively focus on AMLs and potentially disregard others in the image, different attention mechanisms are utilized in the proposed network, including the self-attention mechanism and the convolutional block attention module (CBAM). The proposed network was trained and evaluated on 180 chest CT scans which consist of 180 AMLs. 90 AMLs were identified as thymic cysts, and 90 AMLs were diagnosed as thymoma. The proposed network achieved an average dice similarity coefficient (DSC) of 93.23 with 5-fold cross-validation, for which the mean Intersection over Union (IoU), sensitivity and specificity were 90.29, 93.98 and 95.68 respectively. Our method demonstrated an improved segmentation performance over state-of-the-art segmentation networks, including UNet, ResUNet, TransUNet and UNet++. The proposed network employing attention mechanisms exhibited a promising result for segmenting AMLs from chest CT imaging and could be used to automate the AML detection process for achieving improved diagnostic reliability.
引用
收藏
页码:45969 / 45987
页数:19
相关论文
共 41 条
[1]   Longitudinal CT and MRI Characteristics of Unilocular Thymic Cysts [J].
Ackman, Jeanne B. ;
Chintanapakdee, Wariya ;
Mendoza, Dexter P. ;
Price, Melissa C. ;
Lanuti, Michael ;
Shepard, Jo-Anne O. .
RADIOLOGY, 2021, 301 (02) :443-454
[2]   iW-Net: an automatic and minimalistic interactive lung nodule segmentation deep network [J].
Aresta, Guilherme ;
Jacobs, Colin ;
Araujo, Teresa ;
Cunha, Antonio ;
Ramos, Isabel ;
Ginneken, Bram van ;
Campilho, Aurelio .
SCIENTIFIC REPORTS, 2019, 9 (1)
[3]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[4]  
Ba JL., 2016, arXiv
[5]   Understanding and Appreciating Burnout in Radiologists [J].
Bailey, Christopher R. ;
Bailey, Allison M. ;
McKenney, Anna Sophia ;
Weiss, Clifford R. .
RADIOGRAPHICS, 2022, 42 (05) :E137-E139
[6]   Early detection of ankylosing spondylitis using texture features and statistical machine learning, and deep learning, with some patient ageanalysis Riel [J].
Castro-Zunti, Riel ;
Park, Eun Hae ;
Choi, Younhee ;
Jin, Gong Yong ;
Ko, Seok-bum .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2020, 82 (82)
[7]  
Chen J, 2021, arXiv
[8]   Characteristics and outcomes of anterior mediastinal cystic lesions diagnosed on chest MRI: implications for management of cystic lesions [J].
Choe, Jooae ;
Lee, Sang Min ;
Ahn, Yura ;
Kim, Chu Hyun ;
Seo, Joon Beom ;
Lee, Ho Yun .
INSIGHTS INTO IMAGING, 2022, 13 (01)
[9]   This Week in the Journal [J].
de Koning, H. J. ;
van der Aalst, C. M. ;
de Jong, P. A. ;
Scholten, E. T. ;
Nackaerts, K. ;
Heuvelmans, M. A. ;
Lammers, J. -W. J. ;
Weenink, C. ;
Yousaf-Khan, U. ;
Horeweg, N. ;
van't Westeinde, S. ;
Prokop, M. ;
Mali, W. P. ;
Hoesein, F. A. A. Mohamed ;
van Ooijen, P. M. A. ;
Aerts, J. G. J. V. ;
den Bakker, M. A. ;
Thunnissen, E. ;
Verschakelen, J. ;
Vliegenthart, R. ;
Walter, J. E. ;
ten Haaf, K. ;
Groen, H. J. M. ;
Oudkerk, M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 382 (06) :503-513
[10]   COVID-CXNet: Detecting COVID-19 in frontal chest X-ray images using deep learning [J].
Haghanifar, Arman ;
Majdabadi, Mahdiyar Molahasani ;
Choi, Younhee ;
Deivalakshmi, S. ;
Ko, Seokbum .
MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (21) :30615-30645