A transformer-based network for perceptual contrastive underwater image enhancement

被引:5
|
作者
Cheng, Na [1 ]
Sun, Zhixuan [1 ]
Zhu, Xuanbing [1 ]
Wang, Hongyu [1 ]
机构
[1] Dalian Univ Technol, Sch Informat & Commun Engn, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Underwater image enhancement; Transformer; Multi-loss function; Contrastive learning; MODEL;
D O I
10.1016/j.image.2023.117032
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Vision-based underwater image enhancement methods have received much attention for application in the fields of marine engineering and marine science. The absorption and scattering of light in real underwater scenes leads to severe information degradation in the acquired underwater images, thus limiting further development of underwater tasks. To solve these problems, a novel transformer-based perceptual contrastive network for underwater image enhancement methods (TPC-UIE) is proposed to achieve visually friendly and high-quality images, where contrastive learning is applied to the underwater image enhancement (UIE) task for the first time. Specifically, to address the limitations of the pure convolution-based network, we embed the transformer into the UIE network to improve its ability to capture global dependencies. Then, the limits of the transformer are then taken into account as convolution is reintroduced to better capture local attention. At the same time, the dual-attention module strengthens the network's focus on the spatial and color channels that are more severely attenuated. Finally, a perceptual contrastive regularization method is proposed, where a multi-loss function made up of reconstruction loss, perceptual loss, and contrastive loss jointly optimizes the model to simultaneously ensure texture detail, contrast, and color consistency. Experimental results on several existing datasets show that the TPC-UIE obtains excellent performance in both subjective and objective evaluations compared to other methods. In addition, the visual quality of the underwater images is significantly improved by the enhancement of the method and effectively facilitates further development of the underwater task.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] A Transformer-Based Deep Learning Network for Underwater Acoustic Target Recognition
    Feng, Sheng
    Zhu, Xiaoqian
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [22] Underwater Image Enhancement With Cascaded Contrastive Learning
    Liu, Yi
    Jiang, Qiuping
    Wang, Xinyi
    Luo, Ting
    Zhou, Jingchun
    IEEE TRANSACTIONS ON MULTIMEDIA, 2025, 27 : 1512 - 1525
  • [23] Residual Dense Blocks and Contrastive Regularization Integrated Underwater Image Enhancement Network
    Zhao, Hualong
    Yuan, Hongchun
    IEEE ACCESS, 2023, 11 : 113017 - 113026
  • [24] TEGAN: Transformer Embedded Generative Adversarial Network for Underwater Image Enhancement
    Zhi Gao
    Jing Yang
    Lu Zhang
    Fengling Jiang
    Xixiang Jiao
    Cognitive Computation, 2024, 16 : 191 - 214
  • [25] Cformer: An underwater image enhancement hybrid network combining convolution and transformer
    Deng, Ruhui
    Zhao, Lei
    Li, Heng
    Liu, Hui
    IET IMAGE PROCESSING, 2023, 17 (13) : 3841 - 3855
  • [26] TEGAN: Transformer Embedded Generative Adversarial Network for Underwater Image Enhancement
    Gao, Zhi
    Yang, Jing
    Zhang, Lu
    Jiang, Fengling
    Jiao, Xixiang
    COGNITIVE COMPUTATION, 2024, 16 (01) : 191 - 214
  • [27] Convolution-transformer blend pyramid network for underwater image enhancement ☆
    Ma, Lunpeng
    Hong, Dongyang
    Yin, Shibai
    Deng, Wanqiu
    Yang, Yang
    Yang, Yee-Hong
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2024, 101
  • [28] Transformer-based Image Compression
    Lu, Ming
    Guo, Peiyao
    Shi, Huiqing
    Cao, Chuntong
    Ma, Zhan
    DCC 2022: 2022 DATA COMPRESSION CONFERENCE (DCC), 2022, : 469 - 469
  • [29] Transformer-Based No-Reference Image Quality Assessment via Supervised Contrastive Learning
    Shi, Jinsong
    Gao, Pan
    Qin, Jie
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 5, 2024, : 4829 - 4837
  • [30] TopNet: Transformer-based Object Placement Network for Image Compositing
    Zhu, Sijie
    Lin, Zhe
    Cohen, Scott
    Kuen, Jason
    Zhang, Zhifei
    Chen, Chen
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 1838 - 1847