A transformer-based network for perceptual contrastive underwater image enhancement

被引:5
|
作者
Cheng, Na [1 ]
Sun, Zhixuan [1 ]
Zhu, Xuanbing [1 ]
Wang, Hongyu [1 ]
机构
[1] Dalian Univ Technol, Sch Informat & Commun Engn, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Underwater image enhancement; Transformer; Multi-loss function; Contrastive learning; MODEL;
D O I
10.1016/j.image.2023.117032
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Vision-based underwater image enhancement methods have received much attention for application in the fields of marine engineering and marine science. The absorption and scattering of light in real underwater scenes leads to severe information degradation in the acquired underwater images, thus limiting further development of underwater tasks. To solve these problems, a novel transformer-based perceptual contrastive network for underwater image enhancement methods (TPC-UIE) is proposed to achieve visually friendly and high-quality images, where contrastive learning is applied to the underwater image enhancement (UIE) task for the first time. Specifically, to address the limitations of the pure convolution-based network, we embed the transformer into the UIE network to improve its ability to capture global dependencies. Then, the limits of the transformer are then taken into account as convolution is reintroduced to better capture local attention. At the same time, the dual-attention module strengthens the network's focus on the spatial and color channels that are more severely attenuated. Finally, a perceptual contrastive regularization method is proposed, where a multi-loss function made up of reconstruction loss, perceptual loss, and contrastive loss jointly optimizes the model to simultaneously ensure texture detail, contrast, and color consistency. Experimental results on several existing datasets show that the TPC-UIE obtains excellent performance in both subjective and objective evaluations compared to other methods. In addition, the visual quality of the underwater images is significantly improved by the enhancement of the method and effectively facilitates further development of the underwater task.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Transformer-based Multi-scale Underwater Image Enhancement Network
    Yang, Ai-Ping
    Fang, Si-Jie
    Shao, Ming-Fu
    Zhang, Teng-Fei
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2024, 45 (12): : 1696 - 1705
  • [2] CEWformer: A Transformer-Based Collaborative Network for Simultaneous Underwater Image Enhancement and Watermarking
    Wu, Jun
    Luo, Ting
    He, Zhouyan
    Song, Yang
    Xu, Haiyong
    Li, Li
    IEEE JOURNAL OF OCEANIC ENGINEERING, 2024, 49 (01) : 30 - 47
  • [3] CATDS: cross aggregation transformer-based dynamic supplement network for underwater image enhancement
    Huang, Zhixiong
    Li, Jinjiang
    Hua, Zhen
    Fan, Linwei
    COMMUNICATIONS IN INFORMATION AND SYSTEMS, 2023, 23 (01) : 1 - 30
  • [4] An efficient swin transformer-based method for underwater image enhancement
    Rong Wang
    Yonghui Zhang
    Jian Zhang
    Multimedia Tools and Applications, 2023, 82 : 18691 - 18708
  • [5] An efficient swin transformer-based method for underwater image enhancement
    Wang, Rong
    Zhang, Yonghui
    Zhang, Jian
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (12) : 18691 - 18708
  • [6] LGT: Luminance-guided transformer-based multi-feature fusion network for underwater image enhancement
    Shang, Jiashuo
    Li, Ying
    Xing, Hu
    Yuan, Jingyi
    INFORMATION FUSION, 2025, 118
  • [7] Transformer-based contrastive learning framework for image anomaly detection
    Fan, Wentao
    Shangguan, Weimin
    Chen, Yewang
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (10) : 3413 - 3426
  • [8] Transformer-based contrastive learning framework for image anomaly detection
    Wentao Fan
    Weimin Shangguan
    Yewang Chen
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 3413 - 3426
  • [9] Transformer-based unsupervised contrastive learning for histopathological image classification
    Wang, Xiyue
    Yang, Sen
    Zhang, Jun
    Wang, Minghui
    Zhang, Jing
    Yang, Wei
    Huang, Junzhou
    Han, Xiao
    MEDICAL IMAGE ANALYSIS, 2022, 81
  • [10] Joint-ID: Transformer-Based Joint Image Enhancement and Depth Estimation for Underwater Environments
    Yang, Geonmo
    Kang, Gilhwan
    Lee, Juhui
    Cho, Younggun
    IEEE SENSORS JOURNAL, 2024, 24 (03) : 3113 - 3122