Stabilized interpolation using radial basis functions augmented with selected radial polynomials

被引:6
|
作者
Pooladi, Fatemeh [1 ,2 ]
Larsson, Elisabeth [2 ]
机构
[1] Persian Gulf Univ, Dept Math, Bushehr, Iran
[2] Uppsala Univ, Dept Informat Technol, Uppsala, Sweden
基金
瑞典研究理事会;
关键词
Interpolation; Radial basis function; Radial polynomial; Flat limit; Augmented basis function; OPTIMAL SHAPE-PARAMETERS; MULTIVARIATE INTERPOLATION; STABLE COMPUTATIONS; APPROXIMATION; ALGORITHM; LIMIT;
D O I
10.1016/j.cam.2023.115482
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Infinitely smooth radial basis functions (RBFs) have a shape parameter that controls their shapes. When using these RBFs (e.g., the Gaussian RBF) for interpolation problems, we have ill-conditioning when the shape parameter is very small, while in some cases small shape parameters lead to high accuracy. In this study, we are going to reduce the effect of the ill-conditioning of the infinitely smooth RBFs. We propose a new basis augmenting the infinitely smooth RBFs at different locations with radial polynomials of different even powers. Numerical experiments show that the new basis is stable for all values of the shape parameter.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Radial polynomials as alternatives to flat radial basis functions
    Pooladi, Fatemeh
    Hosseinzadeh, Hossein
    JOURNAL OF MATHEMATICAL MODELING, 2024, 12 (02): : 337 - 354
  • [2] Interpolation by polynomials and radial basis functions on spheres
    Golitschek M.V.
    Light W.A.
    Constructive Approximation, 2001, 17 (1) : 1 - 18
  • [3] Interpolation by polynomials and radial basis functions on spheres
    von Golitschek, M
    Light, WA
    CONSTRUCTIVE APPROXIMATION, 2001, 17 (01) : 1 - 18
  • [4] FACTORIZATION, SYMMETRIZATION, AND TRUNCATED TRANSFORMATION OF RADIAL BASIS FUNCTION-GA STABILIZED GAUSSIAN RADIAL BASIS FUNCTIONS
    Le Borne, Sabine
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2019, 40 (02) : 517 - 541
  • [5] Radial basis function interpolation in the limit of increasingly flat basis functions
    Kindelan, Manuel
    Moscoso, Miguel
    Gonzalez-Rodriguez, Pedro
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 307 : 225 - 242
  • [6] Multidimensional interpolation using osculatory radial basis functions
    Ramachandran, PA
    Karur, SR
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1998, 35 (11) : 63 - 73
  • [7] Quasi-interpolation for data fitting by the radial basis functions
    Han, Xuli
    Hou, Muzhou
    ADVANCES IN GEOMETRIC MODELING AND PROCESSING, 2008, 4975 : 541 - 547
  • [8] Constructive approximate interpolation for real functions by the radial basis function
    Han, Xuli
    Amara, Camara
    Liu, Xinru
    2007 INTERNATIONAL SYMPOSIUM ON COMPUTER SCIENCE & TECHNOLOGY, PROCEEDINGS, 2007, : 342 - 345
  • [9] Hybrid Gaussian-cubic radial basis functions for scattered data interpolation
    Mishra, Pankaj K.
    Nath, Sankar K.
    Sen, Mrinal K.
    Fasshauer, Gregory E.
    COMPUTATIONAL GEOSCIENCES, 2018, 22 (05) : 1203 - 1218
  • [10] Large scattered data interpolation with radial basis functions and space subdivision
    Smolik, Michal
    Skala, Vaclav
    INTEGRATED COMPUTER-AIDED ENGINEERING, 2018, 25 (01) : 49 - 62