Three classes of permutation quadrinomials in odd characteristic

被引:2
作者
Chen, Changhui [1 ]
Kan, Haibin [2 ,3 ]
Peng, Jie [1 ]
Zheng, Lijing [4 ]
Li, Yanjun [5 ]
机构
[1] Shanghai Normal Univ, Math & Sci Coll, Shanghai 200234, Peoples R China
[2] Fudan Univ, Sch Comp Sci, Shanghai Key Lab Intelligent Informat Proc, Shanghai, Peoples R China
[3] Shanghai Inst Adv Commun & Data Sci, Shanghai Engn Res Ctr Blockchain, Shanghai 200433, Peoples R China
[4] Univ South China, Sch Math & Phys, Hengyang 421001, Hunan, Peoples R China
[5] Anhui Univ Finance & Econ, Inst Stat & Appl Math, Bengbu 233030, Anhui, Peoples R China
来源
CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES | 2024年 / 16卷 / 02期
关键词
Finite field; Niho exponent; Permutation polynomial; Quadrinomial; FINITE-FIELDS; POLYNOMIALS; TRINOMIALS; BINOMIALS;
D O I
10.1007/s12095-023-00672-0
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we construct three classes of permutation quadrinomials with Niho exponents of the form f (x) = alpha(0)x(r) + alpha(1)x(s1(pm-1)+r) + alpha(2)x(s2(pm-1)+r) + alpha(3)x(s3(pm-1)+r) is an element of F-pn [x], where p is an odd prime, n = 2m is a positive even integer, and (r, s(1), s(2), s(3)) = (1, -1/p(k)-2, 1, p(k)-1/p(k)-2), (1, p(k)+1/p(k)+2, 1, 1/p(k)+2) and (3, 1, 2, 3), respectively. The exponents of the first two classes are considered for the first time, and the third class covers all the permutation polynomials proposed by Gupta (Designs Codes and Cryptography 88, 1-17, 2020).
引用
收藏
页码:351 / 365
页数:15
相关论文
共 50 条
[41]   Six new classes of permutation trinomials over F33k [J].
Wang, Yanping ;
Zha, Zhengbang ;
Zhang, Weiguo .
APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2018, 29 (06) :479-499
[42]   On Permutation Quadrinomials and 4-Uniform BCT [J].
Li, Nian ;
Xiong, Maosheng ;
Zeng, Xiangyong .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (07) :4845-4855
[43]   A class of permutation trinomials over finite fields of odd characteristic [J].
Ziran Tu ;
Xiangyong Zeng .
Cryptography and Communications, 2019, 11 :563-583
[44]   Several classes of permutation trinomials from Niho exponents [J].
Li, Nian ;
Helleseth, Tor .
CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2017, 9 (06) :693-705
[45]   Four Classes of Bivariate Permutation Polynomials over Finite Fields of Even Characteristic [J].
Chen, Changhui ;
Kan, Haibin ;
Peng, Jie ;
Wang, Li .
IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2024, E107A (07) :1045-1048
[46]   On permutation quadrinomials with boomerang uniformity 4 and the best-known nonlinearity [J].
Kwang Ho Kim ;
Sihem Mesnager ;
Jong Hyok Choe ;
Dok Nam Lee ;
Sengsan Lee ;
Myong Chol Jo .
Designs, Codes and Cryptography, 2022, 90 :1437-1461
[47]   New classes of complete permutation polynomials [J].
Li, Lisha ;
Li, Chaoyun ;
Li, Chunlei ;
Zeng, Xiangyong .
FINITE FIELDS AND THEIR APPLICATIONS, 2019, 55 :177-201
[48]   New classes of permutation binomials and permutation trinomials over finite fields [J].
Li, Kangquan ;
Qu, Longjiang ;
Chen, Xi .
FINITE FIELDS AND THEIR APPLICATIONS, 2017, 43 :69-85
[49]   PERMUTATION POLYNOMIALS OF DEGREE 8 OVER FINITE FIELDS OF ODD CHARACTERISTIC [J].
Fan, Xiang .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 101 (01) :40-55
[50]   Some permutation pentanomials over finite fields with even characteristic [J].
Xu, Guangkui ;
Cao, Xiwang ;
Ping, Jingshui .
FINITE FIELDS AND THEIR APPLICATIONS, 2018, 49 :212-226