Prediction of Cryptocurrency Price using Time Series Data and Deep Learning Algorithms

被引:0
|
作者
Nair, Michael [1 ]
Marie, Mohamed I. [2 ]
Abd-Elmegid, Laila A. [2 ]
机构
[1] Higher Technol Inst, Dept Informat Syst, Heliopolis, Cairo, Egypt
[2] Helwan Univ, Fac Comp & Artificial Intelligence, Dept Informat Syst, Cairo, Egypt
关键词
-Cryptocurrency; deep learning; prediction; LSTM; LSTM; GRU;
D O I
10.14569/IJACSA.2023.0140837
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
One of the most significant and extensively utilized cryptocurrencies is Bitcoin (BTC). It is used in many different financial and business activities. Forecasting cryptocurrency prices are crucial for investors and academics in this industry because of the frequent volatility in the price of this currency. However, because of the nonlinearity of the cryptocurrency market, it is challenging to evaluate the unique character of time-series data, which makes it impossible to provide accurate price forecasts. Predicting cryptocurrency prices has been the subject of several research studies utilizing machine learning (ML) and deep learning (DL) based methods. This research suggests five different DL approaches. To forecast the price of the bitcoin cryptocurrency, recurrent neural networks (RNN), long short -term memories (LSTM), gated recurrent units (GRU), bidirectional long short-term memories (Bi-LSTM), and 1D convolutional neural networks (CONV1D) were used. The experimental findings demonstrate that the LSTM outperformed RNN, GRU, Bi-LSTM, and CONV1D in terms of prediction accuracy using measures such as Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Squared Error (MSE), and R-squared score (R2). With RMSE= 1978.68268, MAE=1537.14424, MSE= 3915185.15068, and R2= 0.94383, it may be considered the best method.
引用
收藏
页码:338 / 347
页数:10
相关论文
共 50 条
  • [31] A Novel Cryptocurrency Price Prediction Model Using GRU, LSTM and bi-LSTM Machine Learning Algorithms
    Hamayel, Mohammad J. J.
    Owda, Amani Yousef
    AI, 2021, 2 (04) : 477 - 496
  • [32] A Multi Parameter Forecasting for Stock Time Series Data Using LSTM and Deep Learning Model
    Zaheer, Shahzad
    Anjum, Nadeem
    Hussain, Saddam
    Algarni, Abeer D. D.
    Iqbal, Jawaid
    Bourouis, Sami
    Ullah, Syed Sajid
    MATHEMATICS, 2023, 11 (03)
  • [33] Cryptocurrency price forecasting - A comparative analysis of ensemble learning and deep learning methods
    Bouteska, Ahmed
    Abedin, Mohammad Zoynul
    Hajek, Petr
    Yuan, Kunpeng
    INTERNATIONAL REVIEW OF FINANCIAL ANALYSIS, 2024, 92
  • [34] A Quest for Context-Specific Stock Price Prediction: A Comparison Between Time Series, Machine Learning and Deep Learning Models
    Mugdha Shailendra Kulkarni
    S. Vijayakumar Bharathi
    Arif Perdana
    Divisha Kilari
    SN Computer Science, 6 (4)
  • [35] Development and external validation of deep learning clinical prediction models using variable-length time series data
    Bashiri, Fereshteh S.
    Carey, Kyle A.
    Martin, Jennie
    Koyner, Jay L.
    Edelson, Dana P.
    Gilbert, Emily R.
    Mayampurath, Anoop
    Afshar, Majid
    Churpek, Matthew M.
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2024, 31 (06) : 1322 - 1330
  • [36] Cryptocurrency price prediction using GPR and SMOTE
    Gokcen, Tugce
    Odabas, Alper
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2024, 42 (05): : 1448 - 1458
  • [37] A Comparative Study of Bitcoin Price Prediction Using Deep Learning
    Ji, Suhwan
    Kim, Jongmin
    Im, Hyeonseung
    MATHEMATICS, 2019, 7 (10)
  • [38] Uncertainty Aware Deep Learning for Fault Prediction Using Multivariate Time Series Signals
    Rahman, Md Monibor
    Vidyaratne, L.
    Carpenter, A.
    Tennant, C.
    Iftekharuddin, K.
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [39] Cryptocurrency price fluctuation and time series analysis through candlestick pattern of bitcoin and ethereum using machine learning
    Kapur, Geeta
    Manohar, Sridhar
    Mittal, Amit
    Jain, Vishal
    Trivedi, Sonal
    INTERNATIONAL JOURNAL OF QUALITY & RELIABILITY MANAGEMENT, 2024, 41 (08) : 2055 - 2074
  • [40] Wind power forecasting based on time series model using deep machine learning algorithms
    Chandran, V.
    Patil, Chandrashekhar K.
    Manoharan, Anto Merline
    Ghosh, Aritra
    Sumithra, M. G.
    Karthick, Alagar
    Rahim, Robbi
    Arun, K.
    MATERIALS TODAY-PROCEEDINGS, 2021, 47 : 115 - 126