Antioxidant layer enables chemically stable cathode-electrolyte interface towards durable and safe Li-ion batteries

被引:17
作者
Chang, Miao [1 ]
Cheng, Fangyuan [1 ]
Zhang, Wen [1 ]
Xu, Jia [1 ]
Zhang, Yi [1 ]
Meng, Tao [1 ]
Sun, Shixiong [1 ]
Xu, Yue [1 ]
Li, Qing [1 ]
Fang, Chun [1 ]
Han, Jiantao [1 ]
Huang, Yunhui [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Hubei, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Lithium-ion batteries; Surface engineering; Nickel-rich layered cathode; Cathode-electrolyte interface; Singlet oxygen; THERMAL RUNAWAY; NI-RICH; OXIDE CATHODE; LITHIUM; TRANSITION; STABILITY; DEGRADATION; COATINGS; BEHAVIOR;
D O I
10.1016/j.ensm.2023.102872
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Although nickel-rich layered lithium transition metal oxides are one of the most promising candidates for high energy-density Li-ion batteries in electric vehicle applications, they yet suffer from irreversible capacity fading and poor safety properties due to the unstable cathode-electrolyte interphase (CEI), especially at high voltage and high temperature. This instability is mainly caused by the attack of free radicals generated from electrolyte decomposition and active oxygen species (especially singlet oxygen) released from the surface lattice. Here, we propose a novel modification method to construct a protective antioxidant layer on the surface of LiNi0.8Co0.1Mn0.1O2 (NCM). By scavenging free radicals and singlet oxygen, the antioxidant layer greatly reduces the interfacial side reactions and significantly suppresses irreversible rock-salt phase transitions and the associated oxygen species release, leading to the stabilization of the interface. As a result, superior electrochemical performance and enhanced thermal stabilities are achieved. Specifically, the modified NCM exhibits a capacity retention of 92.0% over 1000 cycles in full cells and a dramatic increase of onset temperature (T1) from 75.2 degrees C to 114.2 degrees C. This antioxidant layer modification by scavenging free radicals and singlet oxygen provides a new strategy for addressing challenges of CEI design, which is theoretically applicable to all layered transition metal oxide cathode materials.
引用
收藏
页数:9
相关论文
共 52 条
  • [1] Oxidative degradation and stabilisation of polymers
    Al-Malaika, S
    [J]. INTERNATIONAL MATERIALS REVIEWS, 2003, 48 (03) : 165 - 185
  • [2] Tailoring electrolyte to enable high-rate and super-stable Ni-rich NCM cathode materials for Li-ion batteries
    Cheng, Fangyuan
    Zhang, Xiaoyu
    Qiu, Yuegang
    Zhang, Jinxu
    Liu, Yi
    Wei, Peng
    Ou, Mingyang
    Sun, Shixiong
    Xu, Yue
    Li, Qing
    Fang, Chun
    Han, Jiantao
    Huang, Yunhui
    [J]. NANO ENERGY, 2021, 88
  • [3] Recent Progress and Perspective of Advanced High-Energy Co-Less Ni-Rich Cathodes for Li-Ion Batteries: Yesterday, Today, and Tomorrow
    Choi, Ji Ung
    Voronina, Natalia
    Sun, Yang-Kook
    Myung, Seung-Taek
    [J]. ADVANCED ENERGY MATERIALS, 2020, 10 (42)
  • [4] Improved electrochemical properties of Li(Ni0.6Mn0.2Co0.2)O2 by surface coating with Li1.3Al0.3Ti1.7(PO4)3
    Choi, Ji-won
    Lee, Jae-won
    [J]. JOURNAL OF POWER SOURCES, 2016, 307 : 63 - 68
  • [5] Ultrasonic Scanning to Observe Wetting and "Unwetting" in Li-Ion Pouch Cells
    Deng, Zhe
    Huang, Zhenyu
    Shen, Yue
    Huang, Yunhui
    Ding, Han
    Luscombe, Aidan
    Johnson, Michel
    Harlow, Jessie E.
    Gauthier, Roby
    Dahn, Jeff R.
    [J]. JOULE, 2020, 4 (09) : 2017 - 2029
  • [6] Mitigating Thermal Runaway of Lithium-Ion Batteries
    Feng, Xuning
    Ren, Dongsheng
    He, Xiangming
    Ouyang, Minggao
    [J]. JOULE, 2020, 4 (04) : 743 - 770
  • [7] Thermal runaway mechanism of lithium ion battery for electric vehicles: A review
    Feng, Xuning
    Ouyang, Minggao
    Liu, Xiang
    Lu, Languang
    Xia, Yong
    He, Xiangming
    [J]. ENERGY STORAGE MATERIALS, 2018, 10 : 246 - 267
  • [8] Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry
    Feng, Xuning
    Fang, Mou
    He, Xiangming
    Ouyang, Minggao
    Lu, Languang
    Wang, Hao
    Zhang, Mingxuan
    [J]. JOURNAL OF POWER SOURCES, 2014, 255 : 294 - 301
  • [9] Singlet Oxygen Reactivity with Carbonate Solvents Used for Li-Ion Battery Electrolytes
    Freiberg, Anna T. S.
    Roos, Matthias K.
    Wandt, Johannes
    de Vivie-Riedle, Regina
    Gasteiger, Hubert A.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2018, 122 (45) : 8828 - 8839
  • [10] Gas Chromatography/Mass Spectrometry As a Suitable Tool for the Li-Ion Battery Electrolyte Degradation Mechanisms Study
    Gachot, Gregory
    Ribiere, Perrine
    Mathiron, David
    Grugeon, Sylvie
    Armand, Michel
    Leriche, Jean-Bernard
    Pilard, Serge
    Laruelle, Stephane
    [J]. ANALYTICAL CHEMISTRY, 2011, 83 (02) : 478 - 485