Coarse-grained modeling of polystyrene-modified CNTs and their interactions with lipid bilayers

被引:5
作者
Gul, Gulsah [1 ,2 ]
Faller, Roland [2 ]
Ileri-Ercan, Nazar [1 ,3 ]
机构
[1] Bogazici Univ, Dept Chem Engn, Istanbul, Turkiye
[2] Univ Calif Davis, Dept Chem Engn, Davis, CA USA
[3] Middle East Tech Univ, Ankara, Turkiye
关键词
WALLED CARBON NANOTUBES; MOLECULAR-DYNAMICS; FREE-ENERGY; IN-VIVO; DRUG-DELIVERY; FORCE-FIELD; SURFACE-CHEMISTRY; LATERAL DIFFUSION; CHOLESTEROL; FUNCTIONALIZATION;
D O I
10.1016/j.bpj.2023.04.005
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
In the present work, we describe Martini3 coarse-grained models of polystyrene and carboxyl-terminated polysty-rene functionalized carbon nanotubes (CNTs) and investigate their interactions with lipid bilayers with and without cholesterol (CHOL) using molecular dynamics simulations. By changing the polystyrene chain length and grafting density at the end ring of the CNTs at two different nanotube concentrations, we observe the translocation of nanoparticles as well as changes in the lipid bilayer properties. Our results show that all developed models passively diffuse into the membranes without causing any damage to the membrane integrity, although high concentrations of CNTs induce structural and elastic changes in lipid bilayers. In the presence of CHOL, increasing CNT concentration results in decreased rates of CHOL transmembrane motions. On the other hand, CNTs are prone to lipid and polystyrene blockage, which affects their equilibrated configurations, and tilting behavior within the membranes. Hence, we demonstrate that polystyrene-functionalized CNTs are promising drug-carrier agents. However, polystyrene chain length and grafting density are important factors to consider to enhance the efficiency of drug delivery.
引用
收藏
页码:1748 / 1761
页数:14
相关论文
共 106 条
[1]   Martini 3 Coarse-Grained Force Field: Small Molecules [J].
Alessandri, Riccardo ;
Barnoud, Jonathan ;
Gertsen, Anders S. ;
Patmanidis, Ilias ;
de Vries, Alex H. ;
Souza, Paulo C. T. ;
Marrink, Siewert J. .
ADVANCED THEORY AND SIMULATIONS, 2022, 5 (01)
[2]   Dry Martini, a Coarse-Grained Force Field for Lipid Membrane Simblations with Implicit Solvent [J].
Arnarez, Clement ;
Uusitalo, Jaakko J. ;
Masman, Marcelo F. ;
Ingolfsson, Helgi I. ;
de Jong, Djurre H. ;
Melo, Manuel N. ;
Periole, Xavier ;
de Vries, Alex H. ;
Marrink, Siewert J. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2015, 11 (01) :260-275
[3]   Covalent surface chemistry of single-walled carbon nanotubes [J].
Banerjee, S ;
Hemraj-Benny, T ;
Wong, SS .
ADVANCED MATERIALS, 2005, 17 (01) :17-29
[4]   Calculating Partition Coefficients of Small Molecules in Octanol/Water and Cyclohexane/Water [J].
Bannan, Caitlin C. ;
Calabro, Gaetano ;
Kyu, Daisy Y. ;
Mobley, David L. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2016, 12 (08) :4015-4024
[5]   Interaction of Pristine and Functionalized Carbon Nanotubes with Lipid Membranes [J].
Baoukina, Svetlana ;
Monticelli, Luca ;
Tieleman, D. Peter .
JOURNAL OF PHYSICAL CHEMISTRY B, 2013, 117 (40) :12113-12123
[6]  
Barnoud J., CG BUILDER
[7]   EFFICIENT ESTIMATION OF FREE-ENERGY DIFFERENCES FROM MONTE-CARLO DATA [J].
BENNETT, CH .
JOURNAL OF COMPUTATIONAL PHYSICS, 1976, 22 (02) :245-268
[8]   Molecular simulation of rapid translocation of cholesterol, diacylglycerol, and ceramide in model raft and nonraft membranes [J].
Bennett, W. F. Drew ;
Tieleman, D. Peter .
JOURNAL OF LIPID RESEARCH, 2012, 53 (03) :421-429
[9]   Thermodynamic Analysis of the Effect of Cholesterol on Dipalmitoylphosphatidylcholine Lipid Membranes [J].
Bennett, W. F. Drew ;
MacCallum, Justin L. ;
Tieleman, D. Peter .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (05) :1972-1978
[10]   GROMACS - A MESSAGE-PASSING PARALLEL MOLECULAR-DYNAMICS IMPLEMENTATION [J].
BERENDSEN, HJC ;
VANDERSPOEL, D ;
VANDRUNEN, R .
COMPUTER PHYSICS COMMUNICATIONS, 1995, 91 (1-3) :43-56