Coarse-grained modeling of polystyrene-modified CNTs and their interactions with lipid bilayers

被引:1
|
作者
Gul, Gulsah [1 ,2 ]
Faller, Roland [2 ]
Ileri-Ercan, Nazar [1 ,3 ]
机构
[1] Bogazici Univ, Dept Chem Engn, Istanbul, Turkiye
[2] Univ Calif Davis, Dept Chem Engn, Davis, CA USA
[3] Middle East Tech Univ, Ankara, Turkiye
关键词
WALLED CARBON NANOTUBES; MOLECULAR-DYNAMICS; FREE-ENERGY; IN-VIVO; DRUG-DELIVERY; FORCE-FIELD; SURFACE-CHEMISTRY; LATERAL DIFFUSION; CHOLESTEROL; FUNCTIONALIZATION;
D O I
10.1016/j.bpj.2023.04.005
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
In the present work, we describe Martini3 coarse-grained models of polystyrene and carboxyl-terminated polysty-rene functionalized carbon nanotubes (CNTs) and investigate their interactions with lipid bilayers with and without cholesterol (CHOL) using molecular dynamics simulations. By changing the polystyrene chain length and grafting density at the end ring of the CNTs at two different nanotube concentrations, we observe the translocation of nanoparticles as well as changes in the lipid bilayer properties. Our results show that all developed models passively diffuse into the membranes without causing any damage to the membrane integrity, although high concentrations of CNTs induce structural and elastic changes in lipid bilayers. In the presence of CHOL, increasing CNT concentration results in decreased rates of CHOL transmembrane motions. On the other hand, CNTs are prone to lipid and polystyrene blockage, which affects their equilibrated configurations, and tilting behavior within the membranes. Hence, we demonstrate that polystyrene-functionalized CNTs are promising drug-carrier agents. However, polystyrene chain length and grafting density are important factors to consider to enhance the efficiency of drug delivery.
引用
收藏
页码:1748 / 1761
页数:14
相关论文
共 50 条
  • [1] Improved Coarse-Grained Modeling of Cholesterol-Containing Lipid Bilayers
    Daily, Michael D.
    Olsen, Brett N.
    Schlesinger, Paul H.
    Ory, Daniel S.
    Baker, Nathan A.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2014, 10 (05) : 2137 - 2150
  • [2] Understanding Interactions of Curcumin with Lipid Bilayers: A Coarse-Grained Molecular Dynamics Study
    Ercan, Nazar Ileri
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (10) : 4413 - 4426
  • [3] Peptide Nanopores and Lipid Bilayers: Interactions by Coarse-Grained Molecular-Dynamics Simulations
    Klingelhoefer, Jochen W.
    Carpenter, Timothy
    Sansom, Mark S. P.
    BIOPHYSICAL JOURNAL, 2009, 96 (09) : 3519 - 3528
  • [4] Understanding the Phase Behavior of Coarse-Grained Model Lipid Bilayers through Computational Calorimetry
    Rodgers, Jocelyn M.
    Sorensen, Jesper
    de Meyer, Frederick J. -M.
    Schiott, Birgit
    Smit, Berend
    JOURNAL OF PHYSICAL CHEMISTRY B, 2012, 116 (05): : 1551 - 1569
  • [5] Coarse-grained (hybrid) integrative modeling of biomolecular interactions
    Roel-Touris, Jorge
    Bonvin, Alexandre M. J. J.
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2020, 18 : 1182 - 1190
  • [6] Enhanced Sampling of Phase Transitions in Coarse-Grained Lipid Bilayers
    Stelter, David
    Keyes, Tom
    JOURNAL OF PHYSICAL CHEMISTRY B, 2017, 121 (23): : 5770 - 5780
  • [7] Modeling lipid-protein interactions for coarse-grained lipid and Cα protein models
    La Torre, Diego Ugarte
    Takada, Shoji
    JOURNAL OF CHEMICAL PHYSICS, 2021, 155 (15):
  • [8] Coarse-grained modeling of multiphase interactions at microscale
    Huang, Pengyu
    Shen, Luming
    Gan, Yixiang
    Nguyen, Giang D.
    El-Zein, Abbas
    Maggi, Federico
    JOURNAL OF CHEMICAL PHYSICS, 2018, 149 (12):
  • [9] Coarse-grained modeling of lipids
    Bennun, Sandra V.
    Hoopes, Matthew I.
    Xing, Chenyue
    Faller, Roland
    CHEMISTRY AND PHYSICS OF LIPIDS, 2009, 159 (02) : 59 - 66
  • [10] Coarse-Grained Molecular Dynamics Simulation of DPPC Lipid Bilayers: Size Effect on Structural and Dynamic Properties
    Li, Bei
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2018, 23 (05) : 1476 - 1487