Coarse-grained modeling of polystyrene-modified CNTs and their interactions with lipid bilayers

被引:1
|
作者
Gul, Gulsah [1 ,2 ]
Faller, Roland [2 ]
Ileri-Ercan, Nazar [1 ,3 ]
机构
[1] Bogazici Univ, Dept Chem Engn, Istanbul, Turkiye
[2] Univ Calif Davis, Dept Chem Engn, Davis, CA USA
[3] Middle East Tech Univ, Ankara, Turkiye
关键词
WALLED CARBON NANOTUBES; MOLECULAR-DYNAMICS; FREE-ENERGY; IN-VIVO; DRUG-DELIVERY; FORCE-FIELD; SURFACE-CHEMISTRY; LATERAL DIFFUSION; CHOLESTEROL; FUNCTIONALIZATION;
D O I
10.1016/j.bpj.2023.04.005
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
In the present work, we describe Martini3 coarse-grained models of polystyrene and carboxyl-terminated polysty-rene functionalized carbon nanotubes (CNTs) and investigate their interactions with lipid bilayers with and without cholesterol (CHOL) using molecular dynamics simulations. By changing the polystyrene chain length and grafting density at the end ring of the CNTs at two different nanotube concentrations, we observe the translocation of nanoparticles as well as changes in the lipid bilayer properties. Our results show that all developed models passively diffuse into the membranes without causing any damage to the membrane integrity, although high concentrations of CNTs induce structural and elastic changes in lipid bilayers. In the presence of CHOL, increasing CNT concentration results in decreased rates of CHOL transmembrane motions. On the other hand, CNTs are prone to lipid and polystyrene blockage, which affects their equilibrated configurations, and tilting behavior within the membranes. Hence, we demonstrate that polystyrene-functionalized CNTs are promising drug-carrier agents. However, polystyrene chain length and grafting density are important factors to consider to enhance the efficiency of drug delivery.
引用
收藏
页码:1748 / 1761
页数:14
相关论文
共 50 条
  • [1] Coarse-grained modeling of interactions of lipid bilayers with supports
    Hoopes, Matthew I.
    Deserno, Markus
    Longo, Margie L.
    Faller, Roland
    JOURNAL OF CHEMICAL PHYSICS, 2008, 129 (17):
  • [2] Coarse-grained interactions between lipid bilayers
    Michaud-Agrawal, Naveen P.
    Crozier, Paul S.
    Stevens, Mark
    Woolf, Thomas B.
    BIOPHYSICAL JOURNAL, 2007, : 424A - 424A
  • [3] Coarse-grained simulation of cation interactions with lipid bilayers
    Hills, Ronald
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [4] Coarse-grained simulations of shock wave - lipid bilayers interactions
    Berkowitz, Max
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [5] Coarse-grained simulations of lipid bilayers
    Stevens, MJ
    JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (23): : 11942 - 11948
  • [6] Improved Coarse-Grained Modeling of Cholesterol Activation in Lipid Bilayers
    Daily, Michael D.
    Olsen, Brett N.
    Schlesinger, Paul H.
    Ory, Daniel S.
    Baker, Nathan A.
    BIOPHYSICAL JOURNAL, 2013, 104 (02) : 590A - 591A
  • [7] Interactions of lipid bilayers with supports: A coarse-grained molecular simulation study
    Xing, Chenyue
    Faller, Roland
    JOURNAL OF PHYSICAL CHEMISTRY B, 2008, 112 (23): : 7086 - 7094
  • [8] Improved Coarse-Grained Modeling of Cholesterol-Containing Lipid Bilayers
    Daily, Michael D.
    Olsen, Brett N.
    Schlesinger, Paul H.
    Ory, Daniel S.
    Baker, Nathan A.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2014, 10 (05) : 2137 - 2150
  • [9] Coarse-grained modeling of supported and tethered bilayers
    Faller, R.
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2013, 42 : S121 - S121
  • [10] Understanding Interactions of Curcumin with Lipid Bilayers: A Coarse-Grained Molecular Dynamics Study
    Ercan, Nazar Ileri
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (10) : 4413 - 4426