New bounds on the outer-independent total double Roman domination number

被引:0
作者
Sheikholeslami, S. M. [1 ]
Volkmann, L. [2 ]
机构
[1] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
[2] Rhein Westfal TH Aachen, Lehrstuhlfur Math 2, D-52056 Aachen, Germany
关键词
(Total) double Roman domination; outer-independent (total) double Roman domination;
D O I
10.1142/S179383092350043X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A double Roman dominating function (DRDF) on a graph G = (V,E) is a function f : V ->{0, 1, 2, 3} satisfying (i) if f(v) = 0 then there must be at least two neighbors assigned two under f or one neighbor w with f(w) = 3; and (ii) if f(v) = 1 then v must be adjacent to a vertex w such that f(w) =2. A DRDF is an outer-independent total double Roman dominating function (OITDRDF) on G if the set of vertices labeled 0 induces an edgeless subgraph and the subgraph induced by the vertices with a non-zero label has no isolated vertices. The weight of an OITDRDF is the sum of its function values over all vertices, and the outer-independent total Roman domination number ?(oi)(tdR)(G) is the minimum weight of an OITDRDF on G. In this paper, we establish various bounds on ?(oi)(tdR)(G). In particular, we present Nordhaus-Gaddum-type inequalities for this parameter. Some of our results improve the previous results.
引用
收藏
页数:13
相关论文
共 24 条
  • [1] On the Outer Independent Total Double Roman Domination in Graphs
    Ahangar, H. Abdollahzadeh
    Chellali, M.
    Sheikholeslami, S. M.
    Valenzuela-Tripodoro, J. C.
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (03)
  • [2] TOTAL ROMAN DOMINATION IN GRAPHS
    Ahangar, Hossein Abdollahzadeh
    Henning, Michael A.
    Samodivkin, Vladimir
    Yero, Ismael G.
    [J]. APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2016, 10 (02) : 501 - 517
  • [3] Total double Roman domination numbers in digraphs
    Amjadi, J.
    Pourhosseini, F.
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (06)
  • [4] Quadruple Roman domination in graphs
    Amjadi, J.
    Khalili, N.
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (03)
  • [5] Nordhaus-Gaddum bounds for total Roman domination
    Amjadi, J.
    Sheikholeslami, S. M.
    Soroudi, M.
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 35 (01) : 126 - 133
  • [6] Total restrained Roman domination
    Amjadi, Jafar
    Samadi, Babak
    Volkmann, Lutz
    [J]. COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2023, 8 (03) : 575 - 587
  • [7] ON THE TOTAL ROMAN DOMINATION IN TREES
    Amjadi, Jafar
    Sheikholeslami, Seyed Mahmoud
    Soroudi, Marzieh
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (02) : 519 - 532
  • [8] A characterization relating domination, semitotal domination and total Roman domination in trees
    Cabrera Martinez, Abel
    Martinez Arias, Alondra
    Menendez Castillo, Maikel
    [J]. COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2021, 6 (02) : 197 - 209
  • [9] Algorithmic aspects of total Roman {2}-domination in graphs
    Chakradhar, P.
    Reddy, P. Venkata Subba
    [J]. COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2022, 7 (02) : 183 - 192
  • [10] INDEPENDENCE NUMBERS OF COMPLEMENTARY GRAPHS
    CHARTRAND, G
    SCHUSTER, S
    [J]. TRANSACTIONS OF THE NEW YORK ACADEMY OF SCIENCES, 1974, 36 (03) : 247 - 251