Design of the shattered pellet injection system for ASDEX Upgrade

被引:32
作者
Dibon, M. [1 ]
de Marne, P. [1 ]
Papp, G. [1 ]
Vinyar, I. [2 ]
Lukin, A. [2 ]
Jachmich, S. [3 ]
Kruezi, U. [3 ]
Muir, A. [3 ]
Rohde, V. [1 ]
Lehnen, M. [3 ]
Heinrich, P. [1 ]
Peherstorfer, T. [4 ]
Podymskii, D. [2 ]
机构
[1] Max Planck Inst Plasma Phys, Boltzmannstr 2, D-85748 Garching, Germany
[2] PELIN LLC, 18A Grazhdanskaya Ulitsa,apt 17, St Petersburg 190031, Russia
[3] ITER Org, Route Vinon sur Verdon CS 90 046, F-13067 St Paul Les Durance, France
[4] TU Wien, Inst Appl Phys, Wiedner Hauptstr 8-10-134, A-1040 Vienna, Austria
关键词
IMPURITY;
D O I
10.1063/5.0141799
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
A new shattered pellet injection system was designed and built to perform disruption mitigation experiments on ASDEX Upgrade. The system can inject pellets with diameters of 1, 2, 4, or 8 mm with variable lengths over a range of L/D ratios of similar to 0.5-1.5. By using helium or deuterium as propellant gas, the pellets can be accelerated to speeds between 60 and 750 m/s. The velocity range slightly depends on the pellet mass. The injection system is capable of preparing three pellets in separate barrels at the same time. Once accelerated by the propellant gas pulse, the pellets travel through one of three parallel flight tubes. Each flight tube is separated into three sections with increasing diameters of 12, 14, and 16 mm. Two gaps between the sections allow for removal of the propellant gas by expansion into two separate expansions tanks (0.3 and 0.035 m(3)), pellet observation in the first gap and the torus gate valve in the second. Each flight tube end is equipped with an exchangeable shatter head with different shatter angles, square or circular cross-section, and different lengths. The gas preparation and control systems allow highly automated pellet generation for precision of the pellet composition and an excellent reproducibility of shattered pellet experiments.
引用
收藏
页数:10
相关论文
共 22 条
[1]   Shattered pellet injection technology design and characterization for disruption mitigation experiments [J].
Baylor, L. R. ;
Meitner, S. J. ;
Gebhart, T. E. ;
Caughman, J. B. O. ;
Herfindal, J. L. ;
Shiraki, D. ;
Youchison, D. L. .
NUCLEAR FUSION, 2019, 59 (06)
[2]   First demonstration of rapid shutdown using neon shattered pellet injection for thermal quench mitigation on DIII-D [J].
Commaux, N. ;
Shiraki, D. ;
Baylor, L. R. ;
Hollmann, E. M. ;
Eidietis, N. W. ;
Lasnier, C. J. ;
Moyer, R. A. ;
Jernigan, T. C. ;
Meitner, S. J. ;
Combs, S. K. ;
Foust, C. R. .
NUCLEAR FUSION, 2016, 56 (04)
[3]  
Evans TE, 1997, J NUCL MATER, V241, P606, DOI 10.1016/S0022-3115(97)80108-0
[4]   Chapter 3:: MHD stability, operational limits and disruptions [J].
Hender, T. C. ;
Wesley, J. C. ;
Bialek, J. ;
Bondeson, A. ;
Boozer, A. H. ;
Buttery, R. J. ;
Garofalo, A. ;
Goodman, T. P. ;
Granetz, R. S. ;
Gribov, Y. ;
Gruber, O. ;
Gryaznevich, M. ;
Giruzzi, G. ;
Guenter, S. ;
Hayashi, N. ;
Helander, P. ;
Hegna, C. C. ;
Howell, D. F. ;
Humphreys, D. A. ;
Huysmans, G. T. A. ;
Hyatt, A. W. ;
Isayama, A. ;
Jardin, S. C. ;
Kawano, Y. ;
Kellman, A. ;
Kessel, C. ;
Koslowski, H. R. ;
La Haye, R. J. ;
Lazzaro, E. ;
Liu, Y. Q. ;
Lukash, V. ;
Manickam, J. ;
Medvedev, S. ;
Mertens, V. ;
Mirnov, S. V. ;
Nakamura, Y. ;
Navratil, G. ;
Okabayashi, M. ;
Ozeki, T. ;
Paccagnella, R. ;
Pautasso, G. ;
Porcelli, F. ;
Pustovitov, V. D. ;
Riccardo, V. ;
Sato, M. ;
Sauter, O. ;
Schaffer, M. J. ;
Shimada, M. ;
Sonato, P. ;
Strait, E. J. .
NUCLEAR FUSION, 2007, 47 (06) :S128-S202
[5]   Status of research toward the ITER disruption mitigation system [J].
Hollmann, E. M. ;
Aleynikov, P. B. ;
Fulop, T. ;
Humphreys, D. A. ;
Izzo, V. A. ;
Lehnen, M. ;
Lukash, V. E. ;
Papp, G. ;
Pautasso, G. ;
Saint-Laurent, F. ;
Snipes, J. A. .
PHYSICS OF PLASMAS, 2015, 22 (02)
[6]   Measurements of impurity and heat dynamics during noble gas jet-initiated fast plasma shutdown for disruption mitigation in DIII-D [J].
Hollmann, EM ;
Jernigan, TC ;
Groth, M ;
Whyte, DG ;
Gray, DS ;
Austin, ME ;
Bray, BD ;
Brennan, DP ;
Brooks, NH ;
Evans, TE ;
Humphreys, DA ;
Lasnier, CJ ;
Moyer, RA ;
McLean, AG ;
Parks, PB ;
Rozhansky, V ;
Rudakov, DL ;
Strait, EJ ;
West, WP .
NUCLEAR FUSION, 2005, 45 (09) :1046-1055
[7]   Disruption generated runaway electrons in TEXTOR and ITER [J].
Jaspers, R ;
Cardozo, NJL ;
Schuller, FC ;
Finken, KH ;
Grewe, T ;
Mank, G .
NUCLEAR FUSION, 1996, 36 (03) :367-373
[8]   Disruption mitigation by massive gas injection in JET [J].
Lehnen, M. ;
Alonso, A. ;
Arnoux, G. ;
Baumgarten, N. ;
Bozhenkov, S. A. ;
Brezinsek, S. ;
Brix, M. ;
Eich, T. ;
Gerasimov, S. N. ;
Huber, A. ;
Jachmich, S. ;
Kruezi, U. ;
Morgan, P. D. ;
Plyusnin, V. V. ;
Reux, C. ;
Riccardo, V. ;
Sergienko, G. ;
Stamp, M. F. .
NUCLEAR FUSION, 2011, 51 (12)
[9]   Comparison of disruption mitigation from shattered pellet injection with massive gas injection on J-TEXT [J].
Li, Y. ;
Chen, Z. Y. ;
Yan, W. ;
Wei, Y. N. ;
Tong, R. H. ;
Lin, Z. F. ;
Li, W. ;
Bai, W. ;
Wang, N. C. ;
Li, D. ;
Chen, Z. P. ;
Jiang, Z. H. ;
Yang, Z. J. ;
Ding, Y. H. ;
Pan, Y. .
NUCLEAR FUSION, 2021, 61 (12)
[10]   Design and Commissioning of a Three-Barrel Shattered Pellet Injector for DIII-D Disruption Mitigation Studies [J].
Meitner, S. ;
Baylor, L. R. ;
Commaux, N. ;
Shiraki, D. ;
Combs, S. ;
Bjorholm, T. ;
Ha, T. ;
McGinnis, W. .
FUSION SCIENCE AND TECHNOLOGY, 2017, 72 (03) :318-323