Evolution of cox2 introns in angiosperm mitochondria and efficient splicing of an elongated cox2i691 intron

被引:0
作者
Edera, Alejandro A. [1 ]
Howell, Katharine A. [2 ]
Nevill, Paul G. [3 ,4 ]
Small, Ian [2 ,5 ]
Sanchez-Puerta, M. Virginia [6 ,7 ]
机构
[1] FICH UNL, CONICET, Res Inst Signals Syst & Computat Intelligence, sinc i, Ciudad Univ UNL, RA-3000 Santa Fe, Argentina
[2] Univ Western Australia, Ctr Excellence Plant Energy Biol, Australian Res Council, Crawley, WA, Australia
[3] Kings Pk & Bot Gardens, Bot Gardens & Pk Author, Fraser Ave, Kings Pk, WA, Australia
[4] Univ Western Australia, Sch Plant Biol, Crawley, WA, Australia
[5] Univ Western Australia, Ctr Excellence Computat Syst Biol, Crawley, WA, Australia
[6] Univ Nacl Cuyo, Fac Ciencias Agr, IBAM, CONICET, Almirante Brown 500,M5528AHB, Chacras De Coria, Argentina
[7] Univ Nacl Cuyo, Fac Ciencias Exactas & Nat, RA-5500 Mendoza, Argentina
关键词
RNA splicing; Intron elongation; Localized retroprocessing; cox2i691; C-to-U RNA editing; RNAseq; Transposable element; RNA EDITING SITES; GROUP-II INTRONS; GENE-TRANSFER; HORIZONTAL TRANSFER; PLANT-MITOCHONDRIA; PROTEIN GENE; SEQUENCES; GENOME; RECOMBINATION; NUCLEAR;
D O I
10.1016/j.gene.2023.147393
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
In angiosperms, the mitochondrial cox2 gene harbors up to two introns, commonly referred to as cox2i373 and cox2i691. We studied the cox2 from 222 fully-sequenced mitogenomes from 30 angiosperm orders and analyzed the evolution of their introns. Unlike cox2i373, cox2i691 shows a distribution among plants that is shaped by frequent intron loss events driven by localized retroprocessing. In addition, cox2i691 exhibits sporadic elongations, frequently in domain IV of introns. Such elongations are poorly related to repeat content and two of them showed the presence of LINE transposons, suggesting that increasing intron size is very likely due to nuclear intracelular DNA transfer followed by incorporation into the mitochondrial DNA. Surprisingly, we found that cox2i691 is erroneously annotated as absent in 30 mitogenomes deposited in public databases. Although each of the cox2 introns is similar to 1.5 kb in length, a cox2i691 of 4.2 kb has been reported in Acacia ligulata (Fabaceae). It is still unclear whether its unusual length is due to a trans-splicing arrangement or the loss of functionality of the interrupted cox2. Through analyzing short-read RNA sequencing of Acacia with a multi-step computational strategy, we found that the Acacia cox2 is functional and its long intron is spliced in cis in a very efficient manner despite its length.
引用
收藏
页数:11
相关论文
共 88 条
  • [1] Intracellular gene transfer in action:: Dual transcription and multiple silencings of nuclear and mitochondrial cox2 genes in legumes
    Adams, KL
    Song, KM
    Roessler, PG
    Nugent, JM
    Doyle, JL
    Doyle, JJ
    Palmer, JD
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (24) : 13863 - 13868
  • [2] Mitochondrial gene transfer in pieces:: Fission of the ribosomal protein gene rpl2 and partial or complete gene transfer to the nucleus
    Adams, KL
    Ong, HC
    Palmer, JD
    [J]. MOLECULAR BIOLOGY AND EVOLUTION, 2001, 18 (12) : 2289 - 2297
  • [3] Gapped BLAST and PSI-BLAST: a new generation of protein database search programs
    Altschul, SF
    Madden, TL
    Schaffer, AA
    Zhang, JH
    Zhang, Z
    Miller, W
    Lipman, DJ
    [J]. NUCLEIC ACIDS RESEARCH, 1997, 25 (17) : 3389 - 3402
  • [4] Origins and Recombination of the Bacterial-Sized Multichromosomal Mitochondrial Genome of Cucumber
    Alverson, Andrew J.
    Rice, Danny W.
    Dickinson, Stephanie
    Barry, Kerrie
    Palmer, Jeffrey D.
    [J]. PLANT CELL, 2011, 23 (07) : 2499 - 2513
  • [5] MITOCHONDRIAL RPS14 IS A TRANSCRIBED AND EDITED PSEUDOGENE IN ARABIDOPSIS-THALIANA
    AUBERT, D
    BISANZSEYER, C
    HERZOG, M
    [J]. PLANT MOLECULAR BIOLOGY, 1992, 20 (06) : 1169 - 1174
  • [6] A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny
    Azani, Nasim
    Babineau, Marielle
    Bailey, C. Donovan
    Banks, Hannah
    Barbosa, Ariane R.
    Pinto, Rafael Barbosa
    Boatwright, James S.
    Borges, Leonardo M.
    Brown, Gillian K.
    Bruneau, Anne
    Candido, Elisa
    Cardoso, Domingos
    Chung, Kuo-Fang
    Clark, Ruth P.
    Conceicao, Adilva de S.
    Crisp, Michael
    Cubas, Paloma
    Delgado-Salinas, Alfonso
    Dexter, Kyle G.
    Doyle, Jeff J.
    Duminil, Jerome
    Egan, Ashley N.
    de la Estrella, Manuel
    Falcao, Marcus J.
    Filatov, Dmitry A.
    Fortuna-Perez, Ana Paula
    Fortunato, Renee H.
    Gagnon, Edeline
    Gasson, Peter
    Rando, Juliana Gastaldello
    Goulart de Azevedo Tozzi, Ana Maria
    Gunn, Bee
    Harris, David
    Haston, Elspeth
    Hawkins, Julie A.
    Herendeen, Patrick S.
    Hughes, Colin E.
    Iganci, Joao R. V.
    Javadi, Firouzeh
    Kanu, Sheku Alfred
    Kazempour-Osaloo, Shahrokh
    Kite, Geoffrey C.
    Klitgaard, Bente B.
    Kochanovski, Fabio J.
    Koenen, Erik J. M.
    Kovar, Lynsey
    Lavin, Matt
    le Roux, Marianne
    Lewis, Gwilym P.
    de Lima, Haroldo C.
    [J]. TAXON, 2017, 66 (01) : 44 - 77
  • [7] Cis- and trans-splicing of group II introns in plant mitochondria
    Bonen, Linda
    [J]. MITOCHONDRION, 2008, 8 (01) : 26 - 34
  • [8] Evolution of Mitochondrial Introns in Plants and Photosynthetic Microbes
    Bonen, Linda
    [J]. MITOCHONDRIAL GENOME EVOLUTION, 2012, 63 : 155 - 186
  • [9] High Level of Conservation of Mitochondrial RNA Editing Sites Among Four Populus Species
    Brenner, Wolfram Georg
    Mader, Malte
    Mueller, Niels Andreas
    Hoenicka, Hans
    Schroeder, Hilke
    Zorn, Ingo
    Fladung, Matthias
    Kersten, Birgit
    [J]. G3-GENES GENOMES GENETICS, 2019, 9 (03): : 709 - 717
  • [10] Group II intron splicing factors in plant mitochondria
    Brown, Gregory G.
    des Francs-Small, Catherine Colas
    Ostersetzer-Biran, Oren
    [J]. FRONTIERS IN PLANT SCIENCE, 2014, 5