Using a Hybrid Neural Network and a Regularized Extreme Learning Machine for Human Activity Recognition with Smartphone and Smartwatch

被引:5
|
作者
Tan, Tan-Hsu [1 ]
Shih, Jyun-Yu [1 ]
Liu, Shing-Hong [2 ]
Alkhaleefah, Mohammad [1 ]
Chang, Yang-Lang [1 ]
Gochoo, Munkhjargal [3 ]
机构
[1] Natl Taipei Univ Technol, Dept Elect Engn, Taipei 10608, Taiwan
[2] Chaoyang Univ Technol, Dept Comp Sci & Informat Engn, Taichung, Taiwan
[3] United Arab Emirates Univ, Dept Comp Sci & Software Engn, Al Ain 15551, U Arab Emirates
关键词
mHealth; human activity recognition; bidirectional gated recurrent unit (BiGRU); regularized extreme machine learning (RELM); PHYSICAL-ACTIVITY; FALL DETECTION;
D O I
10.3390/s23063354
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Mobile health (mHealth) utilizes mobile devices, mobile communication techniques, and the Internet of Things (IoT) to improve not only traditional telemedicine and monitoring and alerting systems, but also fitness and medical information awareness in daily life. In the last decade, human activity recognition (HAR) has been extensively studied because of the strong correlation between people's activities and their physical and mental health. HAR can also be used to care for elderly people in their daily lives. This study proposes an HAR system for classifying 18 types of physical activity using data from sensors embedded in smartphones and smartwatches. The recognition process consists of two parts: feature extraction and HAR. To extract features, a hybrid structure consisting of a convolutional neural network (CNN) and a bidirectional gated recurrent unit GRU (BiGRU) was used. For activity recognition, a single-hidden-layer feedforward neural network (SLFN) with a regularized extreme machine learning (RELM) algorithm was used. The experimental results show an average precision of 98.3%, recall of 98.4%, an F-1-score of 98.4%, and accuracy of 98.3%, which results are superior to those of existing schemes.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Smartwatch-based Human Activity Recognition Using Hybrid LSTM Network
    Mekruksavanich, Sakorn
    Jitpattanaku, Anuchit
    2020 IEEE SENSORS, 2020,
  • [2] Hybrid machine learning approach for human activity recognition
    Azar, Ahmad Taher
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2023, 72 (03) : 231 - 239
  • [3] Human activity recognition with smartphone sensors using deep learning neural networks
    Ronao, Charissa Ann
    Cho, Sung-Bae
    EXPERT SYSTEMS WITH APPLICATIONS, 2016, 59 : 235 - 244
  • [4] Unsupervised learning for human activity recognition using smartphone sensors
    Kwon, Yongjin
    Kang, Kyuchang
    Bae, Changseok
    EXPERT SYSTEMS WITH APPLICATIONS, 2014, 41 (14) : 6067 - 6074
  • [5] Human Activity Recognition based on Machine Learning Classification of Smartwatch Accelerometer Dataset
    Radivojevic, Dusan S.
    Mirkov, Nikola S.
    Maletic, Slobodan
    FME TRANSACTIONS, 2021, 49 (01): : 225 - 232
  • [6] Analysis and Evaluation of Smartphone-based Human Activity Recognition Using a Neural Network Approach
    Kwon, Yongjin
    Kang, Kyuchang
    Bae, Changseok
    2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [7] Human Activity Recognition Using an Ensemble Learning Algorithm with Smartphone Sensor Data
    Tan, Tan-Hsu
    Wu, Jie-Ying
    Liu, Shing-Hong
    Gochoo, Munkhjargal
    ELECTRONICS, 2022, 11 (03)
  • [8] GraFeHTy: Graph Neural Network using Federated Learning for Human Activity Recognition
    Sarkar, Abhishek
    Sen, Tanmay
    Roy, Ashis Kumar
    20TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2021), 2021, : 1124 - 1129
  • [9] A New Framework for Smartphone Sensor-Based Human Activity Recognition Using Graph Neural Network
    Mondal, Riktim
    Mukherjee, Debadyuti
    Singh, Pawan Kumar
    Bhateja, Vikrant
    Sarkar, Ram
    IEEE SENSORS JOURNAL, 2021, 21 (10) : 11461 - 11468
  • [10] Smartphone Based Human Activity Recognition Using 1D Lightweight Convolutional Neural Network
    Yi, Myung-Kyu
    Hwang, Seong Oun
    2022 INTERNATIONAL CONFERENCE ON ELECTRONICS, INFORMATION, AND COMMUNICATION (ICEIC), 2022,