Rapid Prototyping of Multi-Functional and Biocompatible Parafilm®-Based Microfluidic Devices by Laser Ablation and Thermal Bonding

被引:7
作者
Wei, Yuanyuan [1 ]
Wang, Tianle [1 ]
Wang, Yuye [2 ]
Zeng, Shuwen [3 ,4 ]
Ho, Yi-Ping [1 ,5 ,6 ,7 ]
Ho, Ho-Pui [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Biomed Engn, Shatin, Hong Kong 999077, Peoples R China
[2] Chinese Acad Sci, Inst Biomed & Hlth Engn, Shenzhen Inst Adv Technol, Bion Sensing & Intelligence Ctr, Shenzhen 518055, Peoples R China
[3] Univ Limoges, XLIM Res Inst, UMR 7252, 123 Ave Albert Thomas, F-87060 Limoges, France
[4] Univ Technol Troyes, Light Nanomat & Nanotechnol L2n, CNRS ERL 7004, F-10000 Troyes, France
[5] Chinese Univ Hong Kong, Ctr Biomat, Hong Kong 999077, Peoples R China
[6] Chinese Acad Sci, Hong Kong Branch, Ctr Excellence Anim Evolut & Genet, Hong Kong 999077, Peoples R China
[7] Minist Educ, Key Lab Regenerat Med, Hong Kong 999077, Peoples R China
关键词
microfluidics; laser ablation; thermal bonding; PAPER;
D O I
10.3390/mi14030656
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this paper, we report a simple, rapid, low-cost, biocompatible, and detachable microfluidic chip fabrication method for customized designs based on Parafilm(R). Here, Parafilm(R) works as both a bonding agent and a functional membrane. Its high ultimate tensile stress (3.94 MPa) allows the demonstration of high-performance actuators such as microvalves and micropumps. By laser ablation and the one-step bonding of multiple layers, 3D structured microfluidic chips were successfully fabricated within 2 h. The consumption time of this method (similar to 2 h) was 12 times less than conventional photolithography (similar to 24 h). Moreover, the shear stress of the PMMA-Parafilm((R))-PMMA specimens (0.24 MPa) was 2.13 times higher than that of the PDMS-PDMS specimens (0.08 MPa), and 0.56 times higher than that of the PDMS-Glass specimens (0.16 MPa), showing better stability and reliability. In this method, multiple easily accessible materials such as polymethylmethacrylate (PMMA), PVC, and glass slides were demonstrated and well-incorporated as our substrates. Practical actuation devices that required high bonding strength including microvalves and micropumps were fabricated by this method with high performance. Moreover, the biocompatibility of the Parafilm(R)-based microfluidic devices was validated through a seven-day E. coli cultivation. This reported fabrication scheme will provide a versatile platform for biochemical applications and point-of-care diagnostics.
引用
收藏
页数:15
相关论文
共 24 条
  • [1] Rapid prototyping of PET microfluidic chips by laser ablation and water-soaking bonding method
    Yin, Zhifu
    MICRO & NANO LETTERS, 2018, 13 (09): : 1302 - 1305
  • [2] Rapid prototyping of shrinkable BOPS-based microfluidic devices
    Fan, Yiqiang
    Wang, Hongliang
    Liu, Shicheng
    Liu, Jingji
    Gao, Kexin
    Zhang, Yajun
    MICROFLUIDICS AND NANOFLUIDICS, 2018, 22 (12)
  • [3] Rapid prototyping of shrinkable BOPS-based microfluidic devices
    Yiqiang Fan
    Hongliang Wang
    Shicheng Liu
    Jingji Liu
    Kexin Gao
    Yajun Zhang
    Microfluidics and Nanofluidics, 2018, 22
  • [4] Rapid prototyping of cyclic olefin copolymer based microfluidic system with CO2 laser ablation
    Jianchen Cai
    Jinyun Jiang
    Feng Gao
    Guangnan Jia
    Jian Zhuang
    Gang Tang
    Yiqiang Fan
    Microsystem Technologies, 2017, 23 : 5063 - 5069
  • [5] Low-cost Rapid Prototyping of Flexible Plastic Paper Based Microfluidic Devices
    Fan, Yiqiang
    Li, Huawei
    Yi, Ying
    Foulds, Ian G.
    2013 8TH ANNUAL IEEE INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS (IEEE NEMS 2013), 2013, : 175 - 178
  • [6] Rapid prototyping of whole-thermoplastic microfluidics with built-in microvalves using laser ablation and thermal fusion bonding
    Shaegh, Seyed Ali Mousavi
    Pourmand, Adel
    Nabavina, Mahboubeh
    Avci, Huseyin
    Tamayol, Ali
    Mostafalu, Pooria
    Ghavifekr, Habib Badri
    Aghdam, Esmaeil Najafi
    Dokmeci, Mehmet Remzi
    Khademhosseini, Ali
    Zhang, Yu Shrike
    SENSORS AND ACTUATORS B-CHEMICAL, 2018, 255 : 100 - 109
  • [7] Rapid fabrication of microfluidic PDMS devices from reusable PDMS molds using laser ablation
    Isiksacan, Ziya
    Guler, M. Tahsin
    Aydogdu, Berkan
    Bilican, Ismail
    Elbuken, Caglar
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2016, 26 (03)
  • [8] Direct Laser Ablation of 2D Material Films for Fabricating Multi-Functional Flexible and Transparent Devices
    Sozen, Yigit
    Ryu, Yu Kyoung
    Martinez, Javier
    Castellanos-Gomez, Andres
    ADVANCED FUNCTIONAL MATERIALS, 2025,
  • [9] Rapid prototyping method for 3D PDMS microfluidic devices using a red femtosecond laser
    Saadat, Mozafar
    Taylor, Marie
    Hughes, Arran
    Hajiyavand, Amir M.
    ADVANCES IN MECHANICAL ENGINEERING, 2020, 12 (12)
  • [10] Rapid prototyping of single-layer microfluidic PDMS devices with abrupt depth variations under non-clean-room conditions by using laser ablation and UV-curable polymer
    Zhibin Yan
    Xiaoyang Huang
    Chun Yang
    Microfluidics and Nanofluidics, 2017, 21