Genetic Risk Assessment of Nonsyndromic Cleft Lip with or without Cleft Palate by Linking Genetic Networks and Deep Learning Models

被引:4
作者
Kang, Geon [1 ]
Baek, Seung-Hak [2 ]
Kim, Young Ho [3 ]
Kim, Dong-Hyun [4 ]
Park, Ji Wan [1 ]
机构
[1] Hallym Univ, Coll Med, Dept Med Genet, Chunchon 24252, South Korea
[2] Seoul Natl Univ, Sch Dent, Dept Orthodont, Seoul 03080, South Korea
[3] Sungkyunkwan Univ, Inst Oral Hlth Sci, Samsung Med Ctr, Sch Med,Dept Orthodont, Seoul 06351, South Korea
[4] Hallym Univ, Coll Med, Dept Social & Prevent Med, Chunchon 24252, South Korea
基金
新加坡国家研究基金会;
关键词
artificial neural network; genetic algorithm; genetic risk prediction; neural networks ensemble; machine learning; nonsyndromic cleft lip with or without cleft palate; polygenic risk score; single nucleotide polymorphism;
D O I
10.3390/ijms24054557
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent deep learning algorithms have further improved risk classification capabilities. However, an appropriate feature selection method is required to overcome dimensionality issues in population-based genetic studies. In this Korean case-control study of nonsyndromic cleft lip with or without cleft palate (NSCL/P), we compared the predictive performance of models that were developed by using the genetic-algorithm-optimized neural networks ensemble (GANNE) technique with those models that were generated by eight conventional risk classification methods, including polygenic risk score (PRS), random forest (RF), support vector machine (SVM), extreme gradient boosting (XGBoost), and deep-learning-based artificial neural network (ANN). GANNE, which is capable of automatic input SNP selection, exhibited the highest predictive power, especially in the 10-SNP model (AUC of 88.2%), thus improving the AUC by 23% and 17% compared to PRS and ANN, respectively. Genes mapped with input SNPs that were selected by using a genetic algorithm (GA) were functionally validated for risks of developing NSCL/P in gene ontology and protein-protein interaction (PPI) network analyses. The IRF6 gene, which is most frequently selected via GA, was also a major hub gene in the PPI network. Genes such as RUNX2, MTHFR, PVRL1, TGFB3, and TBX22 significantly contributed to predicting NSCL/P risk. GANNE is an efficient disease risk classification method using a minimum optimal set of SNPs; however, further validation studies are needed to ensure the clinical utility of the model for predicting NSCL/P risk.
引用
收藏
页数:12
相关论文
共 10 条
[1]   Confirming genes influencing risk to cleft lip with/without cleft palate in a case-parent trio study [J].
Beaty, T. H. ;
Taub, M. A. ;
Scott, A. F. ;
Murray, J. C. ;
Marazita, M. L. ;
Schwender, H. ;
Parker, M. M. ;
Hetmanski, J. B. ;
Balakrishnan, P. ;
Mansilla, M. A. ;
Mangold, E. ;
Ludwig, K. U. ;
Noethen, M. M. ;
Rubini, M. ;
Elcioglu, N. ;
Ruczinski, I. .
HUMAN GENETICS, 2013, 132 (07) :771-781
[2]   Family-based Study Shows Heterogeneity of a Susceptibility Locus on Chromosome 8q24 for Nonsyndromic Cleft Lip and Palate [J].
Blanton, Susan H. ;
Burt, Amber ;
Stal, Samuel ;
Mulliken, John B. ;
Garcia, Elizabeth ;
Hecht, Jacqueline T. .
BIRTH DEFECTS RESEARCH PART A-CLINICAL AND MOLECULAR TERATOLOGY, 2010, 88 (04) :256-259
[3]   Cleft lip and palate: understanding genetic and environmental influences [J].
Dixon, Michael J. ;
Marazita, Mary L. ;
Beaty, Terri H. ;
Murray, Jeffrey C. .
NATURE REVIEWS GENETICS, 2011, 12 (03) :167-178
[4]   Deep learning: new computational modelling techniques for genomics [J].
Eraslan, Gokcen ;
Avsec, Ziga ;
Gagneur, Julien ;
Theis, Fabian J. .
NATURE REVIEWS GENETICS, 2019, 20 (07) :389-403
[5]   Polygenic risk scores: from research tools to clinical instruments [J].
Lewis, Cathryn M. ;
Vassos, Evangelos .
GENOME MEDICINE, 2020, 12 (01)
[6]   Machine learning in prediction of genetic risk of nonsyndromic oral clefts in the Brazilian population [J].
Machado, Renato Assis ;
de Oliveira Silva, Carolina ;
Martelli-Junior, Hercilio ;
das Neves, Lucimara Teixeira ;
Coletta, Ricardo D. .
CLINICAL ORAL INVESTIGATIONS, 2021, 25 (03) :1273-1280
[7]   Genome-wide association study identifies two susceptibility loci for nonsyndromic cleft lip with or without cleft palate [J].
Mangold, Elisabeth ;
Ludwig, Kerstin U. ;
Birnbaum, Stefanie ;
Baluardo, Carlotta ;
Ferrian, Melissa ;
Herms, Stefan ;
Reutter, Heiko ;
de Assis, Nilma Almeida ;
Al Chawa, Taofik ;
Mattheisen, Manuel ;
Steffens, Michael ;
Barth, Sandra ;
Kluck, Nadine ;
Paul, Anna ;
Becker, Jessica ;
Lauster, Carola ;
Schmidt, Guel ;
Braumann, Bert ;
Scheer, Martin ;
Reich, Rudolf H. ;
Hemprich, Alexander ;
Poetzsch, Simone ;
Blaumeiser, Bettina ;
Moebus, Susanne ;
Krawczak, Michael ;
Schreiber, Stefan ;
Meitinger, Thomas ;
Wichmann, Hans-Erich ;
Steegers-Theunissen, Regine P. ;
Kramer, Franz-Josef ;
Cichon, Sven ;
Propping, Peter ;
Wienker, Thomas F. ;
Knapp, Michael ;
Rubini, Michele ;
Mossey, Peter A. ;
Hoffmann, Per ;
Noethen, Markus M. .
NATURE GENETICS, 2010, 42 (01) :24-26
[8]   Non-syndromic Cleft Palate: An Overview on Human Genetic and Environmental Risk Factors [J].
Martinelli, Marcella ;
Palmieri, Annalisa ;
Carinci, Francesco ;
Scapoli, Luca .
FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2020, 8
[9]   Deep learning in neural networks: An overview [J].
Schmidhuber, Juergen .
NEURAL NETWORKS, 2015, 61 :85-117
[10]   Machine Learning Models for Genetic Risk Assessment of Infants with Non-syndromic Orofacial Cleft [J].
Zhang, Shi-Jian ;
Meng, Peiqi ;
Zhang, Jieni ;
Jia, Peizeng ;
Lin, Jiuxiang ;
Wang, Xiangfeng ;
Chen, Feng ;
Wei, Xiaoxing .
GENOMICS PROTEOMICS & BIOINFORMATICS, 2018, 16 (05) :354-364