Adversarial Machine Learning Attacks against Intrusion Detection Systems: A Survey on Strategies and Defense

被引:35
作者
Alotaibi, Afnan [1 ]
Rassam, Murad A. [1 ,2 ]
机构
[1] Qassim Univ, Coll Comp, Dept Informat Technol, Buraydah 51452, Saudi Arabia
[2] Taiz Univ, Fac Engn & Informat Technol, Taizi 6803, Yemen
关键词
adversarial machine learning; intrusion detection systems; adversarial attacks; machine learning; deep learning; network security; NETWORKS; SECURITY;
D O I
10.3390/fi15020062
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Concerns about cybersecurity and attack methods have risen in the information age. Many techniques are used to detect or deter attacks, such as intrusion detection systems (IDSs), that help achieve security goals, such as detecting malicious attacks before they enter the system and classifying them as malicious activities. However, the IDS approaches have shortcomings in misclassifying novel attacks or adapting to emerging environments, affecting their accuracy and increasing false alarms. To solve this problem, researchers have recommended using machine learning approaches as engines for IDSs to increase their efficacy. Machine-learning techniques are supposed to automatically detect the main distinctions between normal and malicious data, even novel attacks, with high accuracy. However, carefully designed adversarial input perturbations during the training or testing phases can significantly affect their predictions and classifications. Adversarial machine learning (AML) poses many cybersecurity threats in numerous sectors that use machine-learning-based classification systems, such as deceiving IDS to misclassify network packets. Thus, this paper presents a survey of adversarial machine-learning strategies and defenses. It starts by highlighting various types of adversarial attacks that can affect the IDS and then presents the defense strategies to decrease or eliminate the influence of these attacks. Finally, the gaps in the existing literature and future research directions are presented.
引用
收藏
页数:34
相关论文
共 107 条
  • [1] Investigating Resistance of Deep Learning-based IDS against Adversaries using min-max Optimization
    Abou Khamis, Rana
    Shafiq, M. Omair
    Matrawy, Ashraf
    [J]. ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,
  • [2] Defense against Universal Adversarial Perturbations
    Akhtar, Naveed
    Liu, Jian
    Mian, Ajmal
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 3389 - 3398
  • [3] Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey
    Akhtar, Naveed
    Mian, Ajmal
    [J]. IEEE ACCESS, 2018, 6 : 14410 - 14430
  • [4] Deep learning approaches for anomaly-based intrusion detection systems: A survey, taxonomy, and open issues
    Aldweesh, Arwa
    Derhab, Abdelouahid
    Emam, Ahmed Z.
    [J]. KNOWLEDGE-BASED SYSTEMS, 2020, 189 (189)
  • [5] Adversarial machine learning in Network Intrusion Detection Systems
    Alhajjar, Elie
    Maxwell, Paul
    Bastian, Nathaniel
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2021, 186
  • [6] [Anonymous], 2017, arXiv
  • [7] [Anonymous], ENHANCING TRANSFOMAT
  • [8] Adversarial attacks on machine learning cybersecurity defences in Industrial Control Systems
    Anthi, Eirini
    Williams, Lowri
    Rhode, Matilda
    Burnap, Pete
    Wedgbury, Adam
    [J]. JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2021, 58
  • [9] Modeling Realistic Adversarial Attacks against Network Intrusion Detection Systems
    Apruzzese, Giovanni
    Andreolini, Mauro
    Ferretti, Luca
    Marchetti, Mirco
    Colajanni, Michele
    [J]. DIGITAL THREATS: RESEARCH AND PRACTICE, 2022, 3 (03):
  • [10] Model Evasion Attack on Intrusion Detection Systems using Adversarial Machine Learning
    Ayub, Md Ahsan
    Johnson, William A.
    Talbert, Douglas A.
    Siraj, Ambareen
    [J]. 2020 54TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), 2020, : 324 - 329