Thermosensitive and biodegradable PCL-based hydrogels: potential scaffolds for cartilage tissue engineering

被引:11
|
作者
Valipour, Fereshteh [1 ,2 ,3 ]
Valioglu, Ferzane [4 ]
Rahbarghazi, Reza [1 ,5 ]
Navali, Amir Mohammad [6 ]
Rashidi, Mohammad Reza [2 ]
Davaran, Soodabeh [2 ,3 ]
机构
[1] Tabriz Univ Med Sci, Stem Cell Res Ctr, Tabriz, Iran
[2] Tabriz Univ Med Sci, Fac Pharm, Dept Med Chem, Tabriz, Iran
[3] Tabriz Univ Med Sci, Appl Drug Res Ctr, Tabriz, Iran
[4] Hacettepe Univ, Fac Sci, Dept Mol Biol, Ankara, Turkey
[5] Tabriz Univ Med Sci, Fac Adv Med Sci, Dept Appl Cell Sci, Tabriz, Iran
[6] Tabriz Univ Med Sci, Dept Orthopedy, Tabriz, Iran
关键词
PCL; thermosensitive hydrogels; engineered scaffolds; cartilage; MESENCHYMAL STEM-CELLS; AUTOLOGOUS CHONDROCYTE IMPLANTATION; IN-VITRO; PEG-PCL; CHONDROGENIC DIFFERENTIATION; 3-DIMENSIONAL SCAFFOLDS; EXTRACELLULAR-MATRIX; COMPOSITE SCAFFOLDS; ARTICULAR-CARTILAGE; ELECTROSPUN FIBER;
D O I
10.1080/09205063.2022.2088530
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Due to a lack of sufficient blood supply and unique physicochemical properties, the treatment of injured cartilage is laborious and needs an efficient strategy. Unfortunately, most of the current therapeutic approaches are, but not completely, unable to restore the function of injured cartilage. Tissue engineering-based modalities are an alternative option to reconstruct the injured tissue. Considering the unique structure and consistency of cartilage tissue (osteochondral junction), it is mandatory to apply distinct biomaterials with unique properties slightly different from scaffolds used for soft tissues. PCL is extensively used for the fabrication of fine therapeutic scaffolds to accelerate the restorative process. Thermosensitive PCL hydrogels with distinct chemical compositions have paved the way for sophisticated cartilage regeneration. This review aimed to collect recent findings regarding the application of PCL in hydrogels blended with natural, synthetic materials in the context of cartilage healing.
引用
收藏
页码:695 / 714
页数:20
相关论文
共 50 条
  • [11] Tissue-derived scaffolds and cells for articular cartilage tissue engineering: characteristics, applications and progress
    Liu, Xuejian
    Meng, Haoye
    Guo, Quanyi
    Sun, Baichuan
    Zhang, Kaihong
    Yu, Wen
    Liu, Shichen
    Wang, Yu
    Jing, Xiaoguang
    Zhang, Zengzeng
    Peng, Jiang
    Yang, Jianhua
    CELL AND TISSUE RESEARCH, 2018, 372 (01) : 13 - 22
  • [12] A review of advanced hydrogels for cartilage tissue engineering
    Ansari, Mojtaba
    Darvishi, Ahmad
    Sabzevari, Alireza
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2024, 12
  • [13] Photopolymerized maleilated chitosan/methacrylated silk fibroin micro/nanocomposite hydrogels as potential scaffolds for cartilage tissue engineering
    Zhou, Yingshan
    Liang, Kaili
    Zhao, Shuyan
    Zhang, Can
    Li, Jun
    Yang, Hongjun
    Liu, Xin
    Yin, Xianze
    Chen, Dongzhi
    Xu, Weilin
    Xiao, Pu
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2018, 108 : 383 - 390
  • [14] PCL-Based Composite Scaffold Matrices for Tissue Engineering Applications
    Nadeem Siddiqui
    Simran Asawa
    Bhaskar Birru
    Ramaraju Baadhe
    Sreenivasa Rao
    Molecular Biotechnology, 2018, 60 : 506 - 532
  • [15] Review of Synthetic and Hybrid Scaffolds in Cartilage Tissue Engineering
    Wasyleczko, Monika
    Sikorska, Wioleta
    Chwojnowski, Andrzej
    MEMBRANES, 2020, 10 (11) : 1 - 28
  • [16] Polymer Fiber Scaffolds for Bone and Cartilage Tissue Engineering
    Zhang, Yanbo
    Liu, Xiaochen
    Zeng, Liangdan
    Zhang, Jin
    Zuo, Jianlin
    Zou, Jun
    Ding, Jianxun
    Chen, Xuesi
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (36)
  • [17] Engineering Cell Attachments to Scaffolds in Cartilage Tissue Engineering
    Steward, Andrew J.
    Liu, Yongxing
    Wagner, Diane R.
    JOM, 2011, 63 (04) : 74 - 82
  • [18] The Marine Polysaccharide Ulvan Confers Potent Osteoinductive Capacity to PCL-Based Scaffolds for Bone Tissue Engineering Applications
    Kikionis, Stefanos
    Ioannou, Efstathia
    Aggelidou, Eleni
    Tziveleka, Leto-Aikaterini
    Demiri, Efterpi
    Bakopoulou, Athina
    Zinelis, Spiros
    Kritis, Aristeidis
    Roussis, Vassilios
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (06) : 1 - 20
  • [19] Thermosensitive Hydrogels for Tissue Engineering
    Kim, Min Sup
    Park, Sang Jun
    Chun, Heung Jea
    Kim, Chun-Ho
    TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2011, 8 (02) : 117 - 123
  • [20] Injectable glycopolypeptide hydrogels as biomimetic scaffolds for cartilage tissue engineering
    Ren, Kaixuan
    He, Chaoliang
    Xiao, Chunsheng
    Li, Gao
    Chen, Xuesi
    BIOMATERIALS, 2015, 51 : 238 - 249