Boosting non-sacrificial H2O2 production on a Bi6S2O15 photocatalyst via creating a crystal surface-dependent internal electric field

被引:8
|
作者
Bian, Gaoming [1 ,2 ]
Wang, Chen [3 ]
Zhang, Yaning [1 ,2 ]
Li, Junshan [4 ]
Lou, Yang [1 ,2 ]
Zhang, Ying [1 ,2 ]
Dong, Yuming [1 ,2 ]
Xu, Jing [5 ]
Zhu, Yongfa [1 ,2 ,6 ]
Pan, Chengsi [1 ,2 ]
机构
[1] Jiangnan Univ, Sch Chem & Mat Engn, Key Lab Synthet & Biol Colloids, Minist Educ, Wuxi 214122, Jiangsu, Peoples R China
[2] Jiangnan Univ, Int Joint Res Ctr Photorespons Mol & Mat, Wuxi 214122, Jiangsu, Peoples R China
[3] Harbin Zhongke Mat Engn Co Ltd, Harbin 150040, Heilongjiang, Peoples R China
[4] Chengdu Univ, Inst Adv Study, Chengdu 610106, Peoples R China
[5] Jiangnan Univ, Sch Food Sci & Technol, Wuxi 214122, Peoples R China
[6] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
HYDROGEN-PEROXIDE; GENERATION; OXIDE; REDUCTION; TEMPERATURE; SEPARATION; HYDROXYL; NANORODS; OXYGEN; BIOCL;
D O I
10.1039/d2ta08722g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Photocatalytic H2O2 production from H2O and O-2 is a green technology, but the available photocatalysts are limited, due to multi-step charge transfer-originated recombination. In this work, Bi6S2O15 (BSO) photocatalysts exposed with (110), (400), and (-130) surfaces, respectively, are newly studied to produce H2O2 from only H2O and O-2. The crystal surface-dependent internal electric field (IEF) is found to strongly inhibit the rapid charge recombination by generating high charge density at the surface and decreasing the electrostatic potential energy. In particular, BSO with the (110) surface exposed exhibits the highest H2O2 production activity (3.4 mM h(-1) g(-1)) under Xe lamp irradiation due to the strongest IEF. The effectiveness of IEF control on H2O2 production gives guidelines for developing more efficient photocatalysts in the future.
引用
收藏
页码:753 / 763
页数:11
相关论文
共 50 条
  • [1] Extended Conjugation Tuning Carbon Nitride for Non-sacrificial H2O2 Photosynthesis and Hypoxic Tumor Therapy
    Ma, Jin
    Peng, Xiaoxiao
    Zhou, Zhixin
    Yang, Hong
    Wu, Kaiqing
    Fang, Zhengzou
    Han, Dan
    Fang, Yanfeng
    Liu, Songqin
    Shen, Yanfei
    Zhang, Yuanjian
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (43)
  • [2] Boosting photocatalytic H2O2 production in pure water over a plasmonic photocatalyst with polyethylenimine modification
    Li, Xiangming
    Zhu, Junjia
    Sun, Bo
    Yuan, Qi
    Li, Haitao
    Ma, Zequn
    Xu, Tiwen
    Chen, Xingyuan
    Fu, Meng
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (03) : 1503 - 1510
  • [3] Sub-Band Assisted Z-Scheme for Effective Non-Sacrificial H2O2 Photosynthesis
    Wang, Wenchao
    Zhou, Tao
    Yang, Yuchen
    Du, Lili
    Xia, Ruiqin
    Shang, Congxiao
    Phillips, David Lee
    Guo, Zhengxiao
    SMALL, 2024, 20 (35)
  • [4] Enhancement of H2O2 generation rate in porphyrin photocatalysts via crystal facets regulation to create strong internal electric field
    Shao, Yunhang
    Zhang, Yaning
    Chen, Chaofeng
    Dou, Shuai
    Lou, Yang
    Dong, Yuming
    Zhu, Yongfa
    Pan, Chengsi
    CHINESE JOURNAL OF CATALYSIS, 2024, 61 : 205 - 214
  • [5] High performance H2O2 production achieved by sulfur-doped carbon on CdS photocatalyst via inhibiting reverse H2O2 decomposition
    Lee, Jae Hwa
    Cho, Hyeonjin
    Park, Sung O.
    Hwang, Jeong Min
    Hong, Yerin
    Sharma, Pankaj
    Jeon, Woo Cheol
    Cho, Yongjoon
    Yang, Changduk
    Kwak, Sang Kyu
    Moon, Hoi Ri
    Jang, Ji-Wook
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2021, 284
  • [6] Construction of a BiOCl/Bi2O2CO3 S-Scheme Heterojunction Photocatalyst via Sharing [Bi2O2]2+ Slabs with Enhanced Photocatalytic H2O2 Production Performance
    Wang, Jianting
    Chu, Qian
    Xu, Meiyu
    Gong, Yunyun
    Feng, Yuanyuan
    Meng, Mingyang
    Gao, Meichao
    LANGMUIR, 2024, 40 (30) : 15456 - 15467
  • [7] Harnessing efficient in-situ H2O2 production via a KPF6/BiOBr photocatalyst for the degradation of polyethylene
    Du, Cuiwei
    Feng, Weiwei
    Nie, Shiyu
    Zhang, Jiale
    Liang, Yutong
    Han, Xiao
    Wu, Yuhan
    Feng, Jinglan
    Dong, Shuying
    Liu, Haijin
    Sun, Jianhui
    SEPARATION AND PURIFICATION TECHNOLOGY, 2021, 279
  • [8] New insights into the surface-dependent activity of graphitic felts for the electro-generation of H2O2
    Zhou, Jing
    An, Xiaoqiang
    Lan, Huachun
    Liu, Huijuan
    Qu, Jiuhui
    APPLIED SURFACE SCIENCE, 2020, 509
  • [9] BiOBr/COF S-scheme photocatalyst for H2O2 production via concerted two-electron pathway
    Zhang, Haozhen
    Liu, Jingjing
    Zhang, Yong
    Cheng, Bei
    Zhu, Bicheng
    Wang, Linxi
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2023, 166 : 241 - 249
  • [10] S-Scheme Heterojunction Photocatalyst for Photocatalytic H2O2 Production: A Review
    Fang, Weili
    Wang, Liang
    CATALYSTS, 2023, 13 (10)