Numerical simulation of repetitive transcranial magnetic stimulation by the smoothed finite element method

被引:2
|
作者
Wang, Z. H. [1 ,2 ]
Wang, G. [1 ,2 ,3 ]
Yu, C. J. [1 ,3 ]
机构
[1] Hebei Univ Technol, Sch Mech Engn, Tianjin 300401, Peoples R China
[2] Tianjin Key Lab Power Transmiss & Safety Technol N, Tianjin 300130, Peoples R China
[3] Hebei Univ Technol, State Key Lab Reliabil & Intelligence Elect Equipm, Tianjin 300130, Peoples R China
基金
中国国家自然科学基金;
关键词
Smoothed finite element method; Repetitive transcranial magnetic stimulation; Quasi -static electromagnetic; Gradient smoothing technique; Numerical methods; INDUCED ELECTRIC-FIELD; G SPACE THEORY; WEAK W-2 FORM; UNIFIED FORMULATION; ES-FEM; COMPUTATION; SOLVE; EEG;
D O I
10.1016/j.enganabound.2022.12.005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents a series of smoothed finite element methods (SFEM) for repetitive transcranial magnetic stimulation (rTMS) based on the quasi-static electromagnetic equations. The problem domain is first discretized into a set of tetrahedral elements and linear shape functions are used to interpolate the field variables. Then the smoothing domains (SDs) are constructed based on the edges, nodes, and faces of the background mesh. The smoothed gradient of electric potential and smoothed magnetic flux density over each SD are obtained by using the gradient smoothing technique (GST). The generalized smoothed Galerkin weakform is utilized to derive the discretized system equations. Numerical examples, including both spherical and realistic shaped heads, illustrate that the SFEM has the following important characteristics: (1) easier pre-processing; (2) better accuracy; (3) faster convergence; (4) higher computational efficiency.
引用
收藏
页码:138 / 151
页数:14
相关论文
共 50 条
  • [1] Transcranial stimulation analysis using the smoothed finite element method
    Wang, G.
    Guo, Z. B.
    Wang, Z. H.
    Han, X.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 391
  • [2] Electroencephalogram and repetitive transcranial magnetic stimulation
    Boutros, NN
    Berman, RM
    Hoffman, R
    Miano, AP
    Campbell, D
    Ilmoniemi, R
    DEPRESSION AND ANXIETY, 2000, 12 (03) : 166 - 169
  • [3] Comparative performance of the finite element method and the boundary element fast multipole method for problems mimicking transcranial magnetic stimulation (TMS)
    Htet, Aung Thu
    Saturnino, Guilherme B.
    Burnham, Edward H.
    Noetscher, Gregory M.
    Nummenmaa, Aapo
    Makarov, Sergey N.
    JOURNAL OF NEURAL ENGINEERING, 2019, 16 (02)
  • [4] A structurally detailed finite element human head model for simulation of transcranial magnetic stimulation
    Chen, Ming
    Mogul, David Jeffery
    JOURNAL OF NEUROSCIENCE METHODS, 2009, 179 (01) : 111 - 120
  • [5] Hybrid smoothed finite element method for acoustic problems
    Li, Eric
    He, Z. C.
    Xu, X.
    Liu, G. R.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 283 : 664 - 688
  • [6] Numerical treatment of acoustic problems with the smoothed finite element method
    Yao, L. Y.
    Yu, D. J.
    Cui, X. Y.
    Zang, X. G.
    APPLIED ACOUSTICS, 2010, 71 (08) : 743 - 753
  • [7] Equipment for Repetitive Transcranial Magnetic Stimulation
    Pernia, Alberto M.
    Zorzo, Candela
    Prieto, Miguel J.
    Martinez, Juan A.
    Higarza, Sara G.
    Mendez, Marta
    Arias, Jorge L.
    IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2020, 14 (03) : 525 - 534
  • [8] Repetitive transcranial magnetic stimulation in psychiatry
    Mishra, Biswa Ranjan
    Sarkar, Sukanto
    Praharaj, Samir Kumar
    Mehta, Varun S.
    Diwedi, Shreyansh
    Nizamie, S. Haque
    ANNALS OF INDIAN ACADEMY OF NEUROLOGY, 2011, 14 (04) : 245 - 250
  • [9] The smoothed finite element method (S-FEM): A framework for the design of numerical models for desired solutions
    Liu, Gui-Rong
    FRONTIERS OF STRUCTURAL AND CIVIL ENGINEERING, 2019, 13 (02) : 456 - 477
  • [10] Linear smoothed extended finite element method
    Surendran, M.
    Natarajan, Sundararajan
    Bordas, Stephane P. A.
    Palani, G. S.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2017, 112 (12) : 1733 - 1749