An immersed finite element method for elliptic interface problems on surfaces

被引:8
作者
Guo, Changyin [1 ]
Xiao, Xufeng [1 ]
Feng, Xinlong [1 ]
Tan, Zhijun [2 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
[2] Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangdong Prov Key Lab Computat Sci, Guangzhou 510275, Peoples R China
关键词
Surface PDEs; Immersed interface method; Interface problems; Finite element method; DISCONTINUOUS GALERKIN METHOD; EQUATIONS; APPROXIMATION;
D O I
10.1016/j.camwa.2022.11.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, an immersed finite element approach is presented for solving interface problems of elliptic PDEs on curved surfaces. Such surface PDEs involve discontinuities in the coefficients. The immersed surface finite element method can avoid complicated body-fitting surface grids generating. The construction of immersed surface finite element space uses generic linear basis functions over non-interface components while the piecewise linear basis functions satisfying jump conditions are applied on interface elements. Thus the proposed approach can efficiently capture the sharp solutions across the interface, and performs substantially superior to the conventional surface finite element method. The error estimate of energy norm is shown. Numerical examples verify the superiorities of the presented method.
引用
收藏
页码:54 / 67
页数:14
相关论文
共 45 条
[1]   A Stefan problem on an evolving surface [J].
Alphonse, Amal ;
Elliott, Charles M. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 373 (2050)
[2]   FINITE ELEMENT METHOD FOR ELLIPTIC EQUATIONS WITH DISCONTINUOUS COEFFICIENTS [J].
BABUSKA, I .
COMPUTING, 1970, 5 (03) :207-&
[3]   A finite element method for interface problems in domains with smooth boundaries and interfaces [J].
Bramble, JH ;
King, JT .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1996, 6 (02) :109-138
[4]   ROBUST EQUILIBRATED RESIDUAL ERROR ESTIMATOR FOR DIFFUSION PROBLEMS: CONFORMING ELEMENTS [J].
Cai, Zhiqiang ;
Zhang, Shun .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (01) :151-170
[5]   Superconvergence of immersed finite element methods for interface problems [J].
Cao, Waixiang ;
Zhang, Xu ;
Zhang, Zhimin .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2017, 43 (04) :795-821
[6]   Finite element methods and their convergence for elliptic and parabolic interface problems [J].
Chen, ZM ;
Zou, J .
NUMERISCHE MATHEMATIK, 1998, 79 (02) :175-202
[7]   Optimal convergence analysis of an immersed interface finite element method [J].
Chou, So-Hsiang ;
Kwak, Do Y. ;
Wee, K. T. .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2010, 33 (02) :149-168
[8]   An h-narrow band finite-element method for elliptic equations on implicit surfaces [J].
Deckelnick, Klaus ;
Dziuk, Gerhard ;
Elliott, Charles M. ;
Heine, Claus-Justus .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2010, 30 (02) :351-376
[9]   Analysis of the discontinuous Galerkin method for elliptic problems on surfaces [J].
Dedner, Andreas ;
Madhavan, Pravin ;
Stinner, Bjoern .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (03) :952-973
[10]   AN ADAPTIVE SURFACE FINITE ELEMENT METHOD BASED ON VOLUME MESHES [J].
Demlow, Alan ;
Olshanskii, Maxim A. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (03) :1624-1647