Optimized segmentation with image inpainting for semantic mapping in dynamic scenes

被引:8
|
作者
Zhang, Jianfeng [1 ]
Liu, Yang [2 ]
Guo, Chi [2 ,3 ,4 ]
Zhan, Jiao [2 ]
机构
[1] Wuhan Univ, Sch Comp Sci, Wuhan, Peoples R China
[2] Wuhan Univ, Global Nav Satellite Syst Res Ctr, Wuhan, Peoples R China
[3] Wuhan Univ, Intelligence Inst, Wuhan, Peoples R China
[4] Hubei Luojia Lab, Wuhan, Peoples R China
关键词
Semantic segmentation; Image inpainting; Semantic mapping; Dynamic scenes; Visual SLAM;
D O I
10.1007/s10489-022-03487-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Moving objects will obscure static objects in a dynamic scene. When the existing semantic segmentation methods deal with these static objects, there are often missing or errors in segmentation results. To solve this problem, we propose a framework that combines image inpainting and semantic segmentation, termed SIS. Our framework adds an image inpainting network and an identical semantic segmentation network in series following an original semantic segmentation network, which can make full use of the two semantic segmentation results to obtain the optimized semantic segmentation results in this scene. Moreover, we combined our framework with Simultaneous Localization and Mapping (SLAM), and conducted experiments on the TUM RGB-D dataset. Experimental results show, the combined SLAM system can construct a semantic octree map with more complete and stable semantic information in dynamic scenes.
引用
收藏
页码:2173 / 2188
页数:16
相关论文
共 50 条
  • [21] Semantic Image Inpainting via Maximum Likelihood
    Ciobanu, Sebastian
    Ciortuz, Liviu
    2020 22ND INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2020), 2020, : 153 - 160
  • [22] Semantic Residual Pyramid Network for Image Inpainting
    Luo, Haiyin
    Zheng, Yuhui
    INFORMATION, 2022, 13 (02)
  • [23] DXNet: An Encoder-Decoder Architecture with XSPP for Semantic Image Segmentation in Street Scenes
    Shang, Yexin
    Zhong, Shan
    Gong, Shengrong
    Zhou, Lifan
    Ying, Wenhao
    NEURAL INFORMATION PROCESSING, ICONIP 2019, PT V, 2019, 1143 : 550 - 557
  • [24] UDS-SLAM: real-time robust visual SLAM based on semantic segmentation in dynamic scenes
    Liu, Jun
    Dong, Junyuan
    Hu, Mingming
    Lu, Xu
    INDUSTRIAL ROBOT-THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH AND APPLICATION, 2024, 51 (02): : 206 - 218
  • [25] Semantic Segmentation of a Point Clouds of an Urban Scenes
    Dashkevich, Andrey
    COMPUTATIONAL LINGUISTICS AND INTELLIGENT SYSTEMS (COLINS-2019), VOL I: MAIN CONFERENCE, 2019, 2362 : 208 - 217
  • [26] Dynamic visual simultaneous localization and mapping based on semantic segmentation module
    Jin, Jing
    Jiang, Xufeng
    Yu, Chenhui
    Zhao, Lingna
    Tang, Zhen
    APPLIED INTELLIGENCE, 2023, 53 (16) : 19418 - 19432
  • [27] Dynamic visual simultaneous localization and mapping based on semantic segmentation module
    Jing Jin
    Xufeng Jiang
    Chenhui Yu
    Lingna Zhao
    Zhen Tang
    Applied Intelligence, 2023, 53 : 19418 - 19432
  • [28] Semantic visual simultaneous localization and mapping (SLAM) using deep learning for dynamic scenes
    Zhang X.Y.
    Rahman A.H.A.
    Qamar F.
    PeerJ Computer Science, 2023, 9
  • [29] Semantic Segmentation for Aerial Mapping
    Martinez-Soltero, Gabriel
    Alanis, Alma Y.
    Arana-Daniel, Nancy
    Lopez-Franco, Carlos
    MATHEMATICS, 2020, 8 (09)
  • [30] Semantic Segmentation and Inpainting of Dust with the S-Dust Dataset
    Buckel, Peter
    Oksanen, Timo
    Dietmueller, Thomas
    IFAC PAPERSONLINE, 2023, 56 (02): : 8896 - 8901