Optimized segmentation with image inpainting for semantic mapping in dynamic scenes

被引:10
作者
Zhang, Jianfeng [1 ]
Liu, Yang [2 ]
Guo, Chi [2 ,3 ,4 ]
Zhan, Jiao [2 ]
机构
[1] Wuhan Univ, Sch Comp Sci, Wuhan, Peoples R China
[2] Wuhan Univ, Global Nav Satellite Syst Res Ctr, Wuhan, Peoples R China
[3] Wuhan Univ, Intelligence Inst, Wuhan, Peoples R China
[4] Hubei Luojia Lab, Wuhan, Peoples R China
关键词
Semantic segmentation; Image inpainting; Semantic mapping; Dynamic scenes; Visual SLAM;
D O I
10.1007/s10489-022-03487-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Moving objects will obscure static objects in a dynamic scene. When the existing semantic segmentation methods deal with these static objects, there are often missing or errors in segmentation results. To solve this problem, we propose a framework that combines image inpainting and semantic segmentation, termed SIS. Our framework adds an image inpainting network and an identical semantic segmentation network in series following an original semantic segmentation network, which can make full use of the two semantic segmentation results to obtain the optimized semantic segmentation results in this scene. Moreover, we combined our framework with Simultaneous Localization and Mapping (SLAM), and conducted experiments on the TUM RGB-D dataset. Experimental results show, the combined SLAM system can construct a semantic octree map with more complete and stable semantic information in dynamic scenes.
引用
收藏
页码:2173 / 2188
页数:16
相关论文
共 32 条
[1]  
[Anonymous], 2014, INT C LEARN REPR ICL
[2]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[3]  
Becattini F, 2018, SEMATIC ROAD LAYOUT
[4]   Empty Cities: A Dynamic-Object-Invariant Space for Visual SLAM [J].
Bescos, Berta ;
Cadena, Cesar ;
Neira, Jose .
IEEE TRANSACTIONS ON ROBOTICS, 2021, 37 (02) :433-451
[5]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[6]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[7]  
Chen LB, 2017, IEEE INT SYMP NANO, P1, DOI 10.1109/NANOARCH.2017.8053709
[8]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223
[9]   The PASCAL Visual Object Classes Challenge: A Retrospective [J].
Everingham, Mark ;
Eslami, S. M. Ali ;
Van Gool, Luc ;
Williams, Christopher K. I. ;
Winn, John ;
Zisserman, Andrew .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2015, 111 (01) :98-136
[10]  
Fox D, 2017, ARXIV 170303098