A two stages prediction strategy for evolutionary dynamic multi-objective optimization

被引:10
|
作者
Sun, Hao [1 ,2 ]
Ma, Xuemin [1 ,2 ]
Hu, Ziyu [1 ,2 ]
Yang, Jingming [1 ,2 ]
Cui, Huihui [1 ,2 ]
机构
[1] Yanshan Univ, Sch Elect Engn, Qinhuangdao 066004, Hebei, Peoples R China
[2] Yanshan Univ, Engn Res Ctr, Minist Educ Intelligent Control Syst & Intelligen, Qinhuangdao 066004, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Dynamic multi-objective problems; Evolutionary algorithm; Kalman filter; Support vector machine; ATTRIBUTE DECISION-MAKING; ALGORITHM; ENVIRONMENTS;
D O I
10.1007/s10489-022-03353-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In many engineering and scientific research processes, the dynamic multi-objective problems (DMOPs) are widely involved. It's a quite challenge, which involves multiple conflicting objects changing over time or environment. The main task of DMOPs is tracking the Pareto front as soon as possible when the object changes over time. To accelerate the tracking process, a two stages prediction strategy (SPS) for DMOPs is proposed. To improve the prediction accuracy, population prediction is divided into center point prediction and manifold prediction when the change is detected. Due to the limitations of the support vector machine, the new population is predicted by the combination of the elite solution in the previous environment and Kalman filter in the early stage. Experimental results show that the proposed algorithm performs better on convergence and distribution when dealing with nonlinear problems, especially in the problems where the environmental change occurs frequently.
引用
收藏
页码:1115 / 1131
页数:17
相关论文
共 50 条
  • [11] A prediction strategy based on decision variable analysis for dynamic Multi-objective Optimization
    Zheng, Jinhua
    Zhou, Yubing
    Zou, Juan
    Yang, Shengxiang
    Ou, Junwei
    Hu, Yaru
    SWARM AND EVOLUTIONARY COMPUTATION, 2021, 60
  • [12] A modular neural network-based population prediction strategy for evolutionary dynamic multi-objective optimization
    Li, Sanyi
    Yang, Shengxiang
    Wang, Yanfeng
    Yue, Weichao
    Qiao, Junfei
    SWARM AND EVOLUTIONARY COMPUTATION, 2021, 62
  • [13] An evolutionary algorithm for dynamic multi-objective optimization
    Wang, Yuping
    Dang, Chuangyin
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 205 (01) : 6 - 18
  • [14] Hybrid driven strategy for constrained evolutionary multi-objective optimization
    Feng, Xue
    Pan, Anqi
    Ren, Zhengyun
    Fan, Zhiping
    INFORMATION SCIENCES, 2022, 585 : 344 - 365
  • [15] Adaptive multi-region prediction strategy for dynamic multi-objective optimization
    Zhang, Tao
    Yu, Linjun
    Yu, Huiwen
    APPLIED SOFT COMPUTING, 2025, 176
  • [16] The IGD-based prediction strategy for dynamic multi-objective optimization
    Hu, Yaru
    Peng, Jiankang
    Ou, Junwei
    Li, Yana
    Zheng, Jinhua
    Zou, Juan
    Jiang, Shouyong
    Yang, Shengxiang
    Li, Jun
    SWARM AND EVOLUTIONARY COMPUTATION, 2024, 91
  • [17] An ensemble learning based prediction strategy for dynamic multi-objective optimization
    Wang, Feng
    Li, Yixuan
    Liao, Fanshu
    Yan, Hongyang
    APPLIED SOFT COMPUTING, 2020, 96
  • [18] An acceleration-based prediction strategy for dynamic multi-objective optimization
    Junxi Zhang
    Shiru Qu
    Zhiteng Zhang
    Shaokang Cheng
    Mingxing Li
    Yang Bi
    Soft Computing, 2024, 28 (2) : 1215 - 1228
  • [19] A Special Points-Based Hybrid Prediction Strategy for Dynamic Multi-Objective Optimization
    Li, Jianxia
    Liu, Ruochen
    Wang, Ruinan
    Liu, Jin
    Mu, Caihong
    IEEE ACCESS, 2019, 7 : 62496 - 62510
  • [20] An acceleration-based prediction strategy for dynamic multi-objective optimization
    Zhang, Junxi
    Qu, Shiru
    Zhang, Zhiteng
    Cheng, Shaokang
    Li, Mingxing
    Bi, Yang
    SOFT COMPUTING, 2024, 28 (02) : 1215 - 1228