Dynamical quantum phase transitions from random matrix theory

被引:0
作者
Perez-Garcia, David [1 ]
Santilli, Leonardo [2 ,3 ]
Tierz, Miguel [1 ]
机构
[1] Univ Complutense Madrid, Dept Anal Matematico & Matemat Aplicada, Madrid 28040, Spain
[2] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
[3] Univ Lisbon, Fac Ciencias, Grp Fis Matemat, Dept Matemat, P-1749016 Lisbon, Portugal
来源
QUANTUM | 2024年 / 8卷
基金
北京市自然科学基金;
关键词
LONGEST INCREASING SUBSEQUENCE; MANY-BODY LOCALIZATION; MODELS; WALKS; ATOMS; TIME;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We uncover a novel dynamical quantum phase transition, using random matrix theory and its associated notion of planar limit. We study it for the isotropic XY Heisenberg spin chain. For this, we probe its real-time dynamics through the Loschmidt echo. This leads to the study of a random matrix ensemble with a complex weight, whose analysis requires novel technical considerations, that we develop. We obtain three main results: 1) There is a third order phase transition at a rescaled critical time, that we determine. 2) The third order phase transition persists away from the thermodynamic limit. 3) For times below the critical value, the difference between the thermodynamic limit and a finite chain decreases exponentially with the system size. All these results depend in a rich manner on the parity of the number of flipped spins of the quantum state conforming the fidelity.
引用
收藏
页数:60
相关论文
共 168 条
  • [1] Aasen D., Topological Defects on the Lattice: Dualities and Degeneracies
  • [2] Topological defects on the lattice: I. The Ising model
    Aasen, David
    Mong, Roger S. K.
    Fendley, Paul
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (35)
  • [3] Colloquium: Many-body localization, thermalization, and entanglement
    Abanin, Dmitry A.
    Altman, Ehud
    Bloch, Immanuel
    Serbyn, Maksym
    [J]. REVIEWS OF MODERN PHYSICS, 2019, 91 (02)
  • [4] Virasoro action on Schur function expansions, Skew Young tableaux, and random walks
    Adler, M
    Van Moerbeke, P
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (03) : 362 - 408
  • [5] Adler M, 2001, COMMUN PUR APPL MATH, V54, P153, DOI 10.1002/1097-0312(200102)54:2<153::AID-CPA2>3.0.CO
  • [6] 2-5
  • [7] The entropy of Hawking radiation
    Almheiri, Ahmed
    Hartman, Thomas
    Maldacena, Juan
    Shaghoulian, Edgar
    Tajdini, Amirhossein
    [J]. REVIEWS OF MODERN PHYSICS, 2021, 93 (03)
  • [8] Replica wormholes and the entropy of Hawking radiation
    Almheiri, Ahmed
    Hartman, Thomas
    Maldacena, Juan
    Shaghoulian, Edgar
    Tajdini, Amirhossein
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (05)
  • [9] Andreief C., 1883, Mem. de la Soc. Sci. Bordeaux, V2, P1
  • [10] On the distribution of the length of the longest increasing subsequence of random permutations
    Baik, J
    Deift, P
    Johansson, K
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (04) : 1119 - 1178