Some dynamic Hardy-type inequalities with negative parameters on time scales nabla calculus

被引:4
|
作者
Aly, Elkhateeb S. [1 ]
Madani, Y. A. [2 ]
Gassem, F. [2 ]
Saied, A. I. [3 ]
Rezk, H. M. [4 ]
Mohammed, Wael W. [2 ,5 ]
机构
[1] Jazan Univ, Coll Sci, Dept Math, POB 114, Jazan 45142, Saudi Arabia
[2] Univ Hail, Coll Sci, Dept Math, Hail 2440, Saudi Arabia
[3] Benha Univ, Fac Sci, Dept Math, Banha, Egypt
[4] Al Azhar Univ, Fac Sci, Dept Math, Nasr City 11884, Egypt
[5] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 02期
关键词
Hardy-type inequalities with negative parameters; time scales; reverse Holder's inequality; chain rule;
D O I
10.3934/math.2024250
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish some new dynamic Hardy-type inequalities with negative parameters on time scales nabla calculus by applying the reverse Holder's inequality, integration by parts, and chain rule on time scales nabla calculus. As special cases of our results (when T = R), we get the continuous analouges of inequalities proven by Benaissa and Sarikaya, and when T = N-0, the results to the best of the authors' knowledge are essentially new.
引用
收藏
页码:5147 / 5170
页数:24
相关论文
共 50 条
  • [41] Hardy-type operators with general kernels and characterizations of dynamic weighted inequalities
    Saker, S. H.
    Osman, M. M.
    O'Regan, D.
    Agarwal, R. P.
    ANNALES POLONICI MATHEMATICI, 2021, 126 (01) : 55 - 78
  • [42] More accurate dynamic Hardy-type inequalities obtained via superquadraticity
    Saker, Samir H.
    Rezk, Haytham M.
    Krnic, Mario
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (03) : 2691 - 2713
  • [43] Some Dynamic Hilbert-Type Inequalities on Time Scales
    AlNemer, Ghada
    Zakarya, Mohammed
    Abd El-Hamid, Hoda A.
    Agarwal, Praveen
    Rezk, Haytham M.
    SYMMETRY-BASEL, 2020, 12 (09):
  • [44] CONCINNITY OF DYNAMIC INEQUALITIES DESIGNED ON CALCULUS OF TIME SCALES
    Sahir, Muhammad Jibril Shahab
    Chaudhry, Faryal
    EURASIAN MATHEMATICAL JOURNAL, 2024, 15 (01): : 65 - 74
  • [45] Hardy-Leindler Type Inequalities on Time Scales
    Saker, S. H.
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2014, 8 (06): : 2975 - 2981
  • [46] Some Hardy-Type Inequalities for Superquadratic Functions via Delta Fractional Integrals
    Hanif, Usama
    Nosheen, Ammara
    Bibi, Rabia
    Khan, Khuram Ali
    Moradi, Hamid Reza
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [47] Characterizations of weighted dynamic Hardy-type inequalities with higher-order derivatives
    S. H. Saker
    R. R. Mahmoud
    K. R. Abdo
    Journal of Inequalities and Applications, 2021
  • [48] Characterizations of weighted dynamic Hardy-type inequalities with higher-order derivatives
    Saker, S. H.
    Mahmoud, R. R.
    Abdo, K. R.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
  • [49] On some dynamic inequalities of Ostrowski, trapezoid, and Gruss type on time scales
    El-Deeb, Ahmed A.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)
  • [50] On some dynamic inequalities of Hilbert's-type on time scales
    El-Deeb, Ahmed A.
    Baleanu, Dumitrru
    Shah, Nehad Ali
    Abdeldaim, Ahmed
    AIMS MATHEMATICS, 2023, 8 (02): : 3378 - 3402