Some dynamic Hardy-type inequalities with negative parameters on time scales nabla calculus

被引:4
|
作者
Aly, Elkhateeb S. [1 ]
Madani, Y. A. [2 ]
Gassem, F. [2 ]
Saied, A. I. [3 ]
Rezk, H. M. [4 ]
Mohammed, Wael W. [2 ,5 ]
机构
[1] Jazan Univ, Coll Sci, Dept Math, POB 114, Jazan 45142, Saudi Arabia
[2] Univ Hail, Coll Sci, Dept Math, Hail 2440, Saudi Arabia
[3] Benha Univ, Fac Sci, Dept Math, Banha, Egypt
[4] Al Azhar Univ, Fac Sci, Dept Math, Nasr City 11884, Egypt
[5] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 02期
关键词
Hardy-type inequalities with negative parameters; time scales; reverse Holder's inequality; chain rule;
D O I
10.3934/math.2024250
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish some new dynamic Hardy-type inequalities with negative parameters on time scales nabla calculus by applying the reverse Holder's inequality, integration by parts, and chain rule on time scales nabla calculus. As special cases of our results (when T = R), we get the continuous analouges of inequalities proven by Benaissa and Sarikaya, and when T = N-0, the results to the best of the authors' knowledge are essentially new.
引用
收藏
页码:5147 / 5170
页数:24
相关论文
共 50 条
  • [31] Some new dynamic Hardy-type inequalities with kernels involving monotone functions
    Saker, Samir H.
    Saied, Ahmed, I
    Krnic, Mario
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (03)
  • [32] Some new dynamic Hardy-type inequalities with kernels involving monotone functions
    Samir H. Saker
    Ahmed I. Saied
    Mario Krnić
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [33] Some new generalized weighted dynamic inequalities of Hardy's type on time scales
    Saker, S. H.
    El-sheikh, M. M. A.
    Madian, A. M.
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2021, 23 (04): : 289 - 301
  • [34] EXTENSIONS OF DYNAMIC INEQUALITIES OF HARDY'S TYPE ON TIME SCALES
    Saker, S. H.
    O'Regan, Donal
    MATHEMATICA SLOVACA, 2015, 65 (05) : 993 - 1012
  • [35] A Variety of Nabla Hardy's Type Inequality on Time Scales
    El-Deeb, Ahmed A.
    Makharesh, Samer D.
    Askar, Sameh S.
    Awrejcewicz, Jan
    MATHEMATICS, 2022, 10 (05)
  • [36] HARDY TYPE INEQUALITIES ON TIME SCALES
    Oguntuase, James A.
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2015, 98 (112): : 219 - 226
  • [37] Hilbert-type inequalities for time scale nabla calculus
    Rezk, H. M.
    AlNemer, Ghada
    Abd El-Hamid, H. A.
    Abdel-Aty, Abdel-Haleem
    Nisar, Kottakkaran Sooppy
    Zakarya, M.
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [38] Hilbert-type inequalities for time scale nabla calculus
    H. M. Rezk
    Ghada AlNemer
    H. A. Abd El-Hamid
    Abdel-Haleem Abdel-Aty
    Kottakkaran Sooppy Nisar
    M. Zakarya
    Advances in Difference Equations, 2020
  • [39] Some Fractional Dynamic Inequalities of Hardy's Type via Conformable Calculus
    Saker, Samir
    Kenawy, Mohammed
    AlNemer, Ghada
    Zakarya, Mohammed
    MATHEMATICS, 2020, 8 (03)
  • [40] Calculus of variations on time scales with nabla derivatives
    Martins, Natalia
    Torres, Delfim F. M.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) : E763 - E773