Biofilm producing plant growth promoting bacteria in combination with glycine betaine uplift drought stress tolerance of maize plant

被引:3
|
作者
Yasmeen, Tahira [1 ]
Arif, Muhammad Saleem [1 ]
Tariq, Mohsin [2 ]
Akhtar, Sadia [1 ]
Syrish, Afira [1 ]
Haidar, Waqas [1 ]
Rizwan, Muhammad [1 ]
Hussain, Muhammad Iftikhar [3 ]
Ahmad, Ajaz [4 ]
Ali, Shafaqat [1 ,5 ]
机构
[1] Govt Coll Univ Faisalabad, Dept Environm Sci, Faisalabad, Pakistan
[2] Govt Coll Univ Faisalabad, Dept Bioinformat & Biotechnol, Faisalabad, Pakistan
[3] Univ Vigo, Dept Plant Biol & Soil Sci, Vigo, Spain
[4] King Saud Univ, Coll Pharm, Dept Clin Pharm, Riyadh, Saudi Arabia
[5] China Med Univ, Dept Biol Sci & Technol, Taichung, Taiwan
来源
FRONTIERS IN PLANT SCIENCE | 2024年 / 15卷
关键词
oxidative stress; antioxidants; drought tolerant rhizobacteria; photosynthetic pigments; moisture stress levels; ZEA-MAYS; OXIDATIVE STRESS; ACC DEAMINASE; ANTIOXIDANT RESPONSES; ENDOPHYTIC BACTERIA; CHILLING TOLERANCE; RHIZOBACTERIA; PSEUDOMONAS; MECHANISMS; WHEAT;
D O I
10.3389/fpls.2024.1327552
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Introduction The escalating threat of drought poses a significant challenge to sustainable food production and human health, as water scarcity adversely impacts various aspects of plant physiology. Maize, a cornerstone in staple cereal crops, faces the formidable challenge of drought stress that triggers a series of transformative responses in the plant.Methods The present study was carried out in two sets of experiments. In first experiment, drought stress was applied after maintaining growth for 45 days and then irrigation was skipped, and plant samples were collected at 1st, 3rd and 6th day of drought interval for evaluation of changes in plant growth, water relation (relative water content) and antioxidants activity by inoculating indigenously isolated drought tolerant biofilm producing rhizobacterial isolates (Bacillus subtilis SRJ4, Curtobacterium citreum MJ1). In the second experiment, glycine betaine was applied as osmoregulator in addition to drought tolerant PGPR to perceive modulation in photosynthetic pigments (Chlorophyll a and b) and plant growth under varying moisture stress levels (100, 75 and 50% FC).Results and discussion Results of the study revealed upsurge in root and shoot length, fresh and dry biomass of root and shoot besides increasing chlorophyll contents in water stressed inoculated plants compared to uninoculated plants. Glycine betaine application resulted in an additional boost to plant growth and photosynthetic pigments, when applied in combination with bacterial inoculants. However, both bacterial inoculants behaved differently under drought stress as evident from their biochemical and physiological attributes. Isolate SRJ4 proved to be superior for its potential to express antioxidant activity, leaf water potential and relative water contents and drought responsive gene expression while isolate MJ1 showed exclusive increase in root dry biomass and plant P contents. Though it is quite difficult to isolate the bacterial isolates having both plant growth promoting traits and drought tolerance together yet, such biological resources could be an exceptional option to be applied for improving crop productivity and sustainable agriculture under abiotic stresses. By exploring the combined application of PGPR and glycine betaine, the study seeks to provide insights into potential strategies for developing sustainable agricultural practices aimed at improving crop resilience under challenging environmental conditions.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Maize Endophytic Plant Growth-Promoting Bacteria Peribacillus simplex Can Alleviate Plant Saline and Alkaline Stress
    Li, Guoliang
    Shi, Miaoxin
    Wan, Wenhao
    Wang, Zongying
    Ji, Shangwei
    Yang, Fengshan
    Jin, Shumei
    Zhang, Jianguo
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (20)
  • [22] Induction of drought tolerance in tomato upon the application of ACC deaminase producing plant growth promoting rhizobacterium Bacillus subtilis Rhizo SF 48
    Gowtham, H. G.
    Singh, Brijesh S.
    Murali, M.
    Shilpa, N.
    Prasad, Melvin
    Aiyaz, Mohammed
    Amruthesh, K. N.
    Niranjana, S. R.
    MICROBIOLOGICAL RESEARCH, 2020, 234 (234)
  • [23] Potential roles of plant growth-promoting microbes in wheat adaptation and tolerance to herbicide and drought stress combination
    Lastochkina, Oksana
    Bosacchi, Massimo
    TURKISH JOURNAL OF AGRICULTURE AND FORESTRY, 2023, 47 (05) : 688 - 712
  • [24] Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays)
    Rojas-Tapias, Daniel
    Moreno-Galvan, Andres
    Pardo-Diaz, Sergio
    Obando, Melissa
    Rivera, Diego
    Bonilla, Ruth
    APPLIED SOIL ECOLOGY, 2012, 61 : 264 - 272
  • [25] Plant growth-promoting bacteria in regulation of plant resistance to stress factors
    Maksimov, I. V.
    Veselova, S. V.
    Nuzhnaya, T. V.
    Sarvarova, E. R.
    Khairullin, R. M.
    RUSSIAN JOURNAL OF PLANT PHYSIOLOGY, 2015, 62 (06) : 715 - 726
  • [26] The role of plant growth promoting rhizobacteria in plant drought stress responses
    Chieb, Maha
    Gachomo, Emma W.
    BMC PLANT BIOLOGY, 2023, 23 (01)
  • [27] Exogenous melatonin confers drought stress by promoting plant growth, photosynthetic capacity and antioxidant defense system of maize seedlings
    Ahmad, Shakeel
    Kamran, Muhammad
    Ding, Ruixia
    Meng, Xiangping
    Wang, Haiqi
    Ahmad, Irshad
    Fahad, Shah
    Han, Qingfang
    PEERJ, 2019, 7
  • [28] Plant Growth Promoting Rhizobacterial Mitigation of Drought Stress in Crop Plants: Implications for Sustainable Agriculture
    Ojuederie, Omena Bernard
    Olanrewaju, Oluwaseyi Samuel
    Babalola, Olubukola Oluranti
    AGRONOMY-BASEL, 2019, 9 (11):
  • [29] Bioprospecting Plant Growth-Promoting Rhizobacteria That Mitigate Drought Stress in Grasses
    Jochum, Michael D.
    McWilliams, Kelsey L.
    Borrego, Eli J.
    Kolomiets, Mike, V
    Niu, Genhua
    Pierson, Elizabeth A.
    Jo, Young-Ki
    FRONTIERS IN MICROBIOLOGY, 2019, 10
  • [30] EVALUATION OF PLANT GROWTH PROMOTING BACTERIA FOR INDUCING STRESS TOLERANCE IN PLANTS AGAINST PETROLEUM HYDROCARBONS
    Rafique, H. M.
    Asghar, H. N.
    Zahir, Z. A.
    Shahbaz, M.
    PAKISTAN JOURNAL OF AGRICULTURAL SCIENCES, 2015, 52 (04): : 905 - 914