Biofilm producing plant growth promoting bacteria in combination with glycine betaine uplift drought stress tolerance of maize plant

被引:3
|
作者
Yasmeen, Tahira [1 ]
Arif, Muhammad Saleem [1 ]
Tariq, Mohsin [2 ]
Akhtar, Sadia [1 ]
Syrish, Afira [1 ]
Haidar, Waqas [1 ]
Rizwan, Muhammad [1 ]
Hussain, Muhammad Iftikhar [3 ]
Ahmad, Ajaz [4 ]
Ali, Shafaqat [1 ,5 ]
机构
[1] Govt Coll Univ Faisalabad, Dept Environm Sci, Faisalabad, Pakistan
[2] Govt Coll Univ Faisalabad, Dept Bioinformat & Biotechnol, Faisalabad, Pakistan
[3] Univ Vigo, Dept Plant Biol & Soil Sci, Vigo, Spain
[4] King Saud Univ, Coll Pharm, Dept Clin Pharm, Riyadh, Saudi Arabia
[5] China Med Univ, Dept Biol Sci & Technol, Taichung, Taiwan
来源
FRONTIERS IN PLANT SCIENCE | 2024年 / 15卷
关键词
oxidative stress; antioxidants; drought tolerant rhizobacteria; photosynthetic pigments; moisture stress levels; ZEA-MAYS; OXIDATIVE STRESS; ACC DEAMINASE; ANTIOXIDANT RESPONSES; ENDOPHYTIC BACTERIA; CHILLING TOLERANCE; RHIZOBACTERIA; PSEUDOMONAS; MECHANISMS; WHEAT;
D O I
10.3389/fpls.2024.1327552
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Introduction The escalating threat of drought poses a significant challenge to sustainable food production and human health, as water scarcity adversely impacts various aspects of plant physiology. Maize, a cornerstone in staple cereal crops, faces the formidable challenge of drought stress that triggers a series of transformative responses in the plant.Methods The present study was carried out in two sets of experiments. In first experiment, drought stress was applied after maintaining growth for 45 days and then irrigation was skipped, and plant samples were collected at 1st, 3rd and 6th day of drought interval for evaluation of changes in plant growth, water relation (relative water content) and antioxidants activity by inoculating indigenously isolated drought tolerant biofilm producing rhizobacterial isolates (Bacillus subtilis SRJ4, Curtobacterium citreum MJ1). In the second experiment, glycine betaine was applied as osmoregulator in addition to drought tolerant PGPR to perceive modulation in photosynthetic pigments (Chlorophyll a and b) and plant growth under varying moisture stress levels (100, 75 and 50% FC).Results and discussion Results of the study revealed upsurge in root and shoot length, fresh and dry biomass of root and shoot besides increasing chlorophyll contents in water stressed inoculated plants compared to uninoculated plants. Glycine betaine application resulted in an additional boost to plant growth and photosynthetic pigments, when applied in combination with bacterial inoculants. However, both bacterial inoculants behaved differently under drought stress as evident from their biochemical and physiological attributes. Isolate SRJ4 proved to be superior for its potential to express antioxidant activity, leaf water potential and relative water contents and drought responsive gene expression while isolate MJ1 showed exclusive increase in root dry biomass and plant P contents. Though it is quite difficult to isolate the bacterial isolates having both plant growth promoting traits and drought tolerance together yet, such biological resources could be an exceptional option to be applied for improving crop productivity and sustainable agriculture under abiotic stresses. By exploring the combined application of PGPR and glycine betaine, the study seeks to provide insights into potential strategies for developing sustainable agricultural practices aimed at improving crop resilience under challenging environmental conditions.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Mechanistic Insights of Plant Growth Promoting Bacteria Mediated Drought and Salt Stress Tolerance in Plants for Sustainable Agriculture
    Gupta, Anmol
    Mishra, Richa
    Rai, Smita
    Bano, Ambreen
    Pathak, Neelam
    Fujita, Masayuki
    Kumar, Manoj
    Hasanuzzaman, Mirza
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (07)
  • [2] Improved drought tolerance in Festuca ovina L. using plant growth promoting bacteria
    Rigi, Fateme
    Saberi, Morteza
    Ebrahimi, Mahdieh
    JOURNAL OF ARID LAND, 2023, 15 (06) : 740 - 755
  • [3] Characterization of actinomycetes isolates for plant growth promoting traits and their effects on drought tolerance in maize
    Chukwuneme, Chinenyenwa Fortune
    Babalola, Olubukola Oluranti
    Kutu, Funso Raphael
    Ojuederie, Omena Bernard
    JOURNAL OF PLANT INTERACTIONS, 2020, 15 (01) : 93 - 105
  • [4] The role of drought response genes and plant growth promoting bacteria on plant growth promotion under sustainable agriculture: A review
    Kumar, Ashok
    Naroju, Sai Prakash
    Kumari, Neha
    Arsey, Shivani
    Kumar, Deepak
    Gubre, Dilasha Fulchand
    Roychowdhury, Abhrajyoti
    Tyagi, Sachin
    Saini, Pankaj
    MICROBIOLOGICAL RESEARCH, 2024, 286
  • [5] Control of Drought Stress in Wheat Using Plant-Growth-Promoting Bacteria
    Kasim, Wedad A.
    Osman, Mohammed E.
    Omar, Mohammed N.
    Abd El-Daim, Islam A.
    Bejai, Sarosh
    Meijer, Johan
    JOURNAL OF PLANT GROWTH REGULATION, 2013, 32 (01) : 122 - 130
  • [6] Control of Drought Stress in Wheat Using Plant-Growth-Promoting Bacteria
    Wedad A. Kasim
    Mohammed E. Osman
    Mohammed N. Omar
    Islam A. Abd El-Daim
    Sarosh Bejai
    Johan Meijer
    Journal of Plant Growth Regulation, 2013, 32 : 122 - 130
  • [7] Exogenous melatonin induces drought stress tolerance by promoting plant growth and antioxidant defence system of soybean plants
    Imran, Muhammad
    Khan, Abdul Latif
    Shahzad, Raheem
    Khan, Muhammad Aaqil
    Bilal, Saqib
    Khan, Adil
    Kang, Sang-Mo
    Lee, In-Jung
    AOB PLANTS, 2021, 13 (04):
  • [8] Progress and Applications of Plant Growth-Promoting Bacteria in Salt Tolerance of Crops
    Gao, Yaru
    Zou, Hong
    Wang, Baoshan
    Yuan, Fang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (13)
  • [9] Impact of Drought Stress on Plant Growth and Its Management Using Plant Growth Promoting Rhizobacteria
    Buragohain, Kabyashree
    Tamuly, Dulumoni
    Sonowal, Sukanya
    Nath, Ratul
    INDIAN JOURNAL OF MICROBIOLOGY, 2024, 64 (2) : 287 - 303
  • [10] Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize
    Naseem, Hafsa
    Bano, Asghari
    JOURNAL OF PLANT INTERACTIONS, 2014, 9 (01) : 689 - 701