Isolation and characterisation of an environmental Clostridium beijerinckii strain for biohydrogen production from dairy wastes

被引:4
作者
Mete, M. [1 ,2 ]
Pattyn, P. [2 ]
Robidart, A. [2 ]
Beringuier, G. [2 ]
Thomas, H. [2 ]
Grandjean, C. [3 ]
Irague, R. [2 ]
Andres, Y. [1 ]
机构
[1] IMT Atlantique, CNRS, Genie Proc Environm Agroalimentaire GEPEA, UMR 6144, 2 Rue Alfred Kastler, F-44300 Nantes, France
[2] Athena Rech & Innovat, F-49170 St Georges Sur Loire, France
[3] Nantes Univ, CNRS, Unite Sci Biol & Biotechnol US2B, UMR 6286, 2 Chem Houssiniere,BP92208, F-44000 Nantes, France
关键词
Clostridium beijerinckii; Biohydrogen; Dark fermentation; Dairy wastes; FERMENTATIVE HYDROGEN-PRODUCTION; CHEESE WHEY; DARK FERMENTATION; MUNICIPAL WASTE; WATER; CELLULOLYTICUM; OPTIMIZATION; PERFORMANCE; COCULTURE; SLUDGE;
D O I
10.1016/j.ijhydene.2023.08.274
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Biological dihydrogen (H-2) production is a promising alternative to the conventional nonrenewable energies. H-2 production by dark fermentation is particularly studied regarding its independence from fossil fuel and electricity, its cultivation into bioreactors and the broad range of substrate that can be used. A major goal application of dark fermentation is the valuation of wastes. In this context, cheese whey wastes are particularly adapted, since rich in organic matter, abundant and low cost. A novel H-2-producing strain was isolated from a sample of mixed bovine manure and cheese whey, collected in a cheese-producing dairy farm. The strain was identified as a Clostridium beijerinckii strain based on morphological and physiological characteristics, and 16S rDNA sequencing. The optimum temperature and pH for H-2 production was 40 degrees C and pH 7, respectively. Substrate and stress tolerance tests showed that C. beijerinckii C.sp.1.3 could produce H-2 from glucose, lactose, maltose, cellobiose, galacturonic acid, xylose, and sucrose, and to a lesser extent from starch, cellulose and glycerol. The H-2 production potential from a mix of dairy industrial wastes of this strain has been evaluated. The highest productivity in batch for 5 g L-1 of Total Organic Carbon (TOC) was 833.1 mL H-2 L-1 d(-1), with a yield of 2.03 mM(H2) mM(lactose)(-1), demonstrating the potential of this strain for H-2 production from industrial wastes. (c) 2023 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:371 / 383
页数:13
相关论文
共 56 条
[1]   Engineered heat treated methanogenic granules: A promising biotechnological approach for extreme thermophilic biohydrogen production [J].
Abreu, Angela A. ;
Alves, Joana I. ;
Pereira, M. Alcina ;
Karakashev, Dimitar ;
Alves, M. Madalena ;
Angelidaki, Irini .
BIORESOURCE TECHNOLOGY, 2010, 101 (24) :9577-9586
[2]   The effect of the initial concentration of glycerol on the hydrogen produced by strains of the genus Clostridium spp. [J].
Alejandro Jauregui, Manuel ;
Ladino, Alexander ;
Malagon-Romero, Dionisio .
INTERNATIONAL JOURNAL OF SUSTAINABLE ENGINEERING, 2018, 11 (03) :205-210
[3]   Characterization on hydrogen production performance of a newly isolated Clostridium beijerinckii YA001 using xylose [J].
An, Dan ;
Li, Qing ;
Wang, Xueqing ;
Yang, Honghui ;
Guo, Liejin .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (35) :19928-19936
[4]   Feasibility Study of Biohydrogen Production from Acid Cheese Whey via Lactate-Driven Dark Fermentation [J].
Aranda-Jaramillo, Brenda ;
Leon-Becerril, Elizabeth ;
Aguilar-Juarez, Oscar ;
Castro-Munoz, Roberto ;
Garcia-Depraect, Octavio .
FERMENTATION-BASEL, 2023, 9 (07)
[5]   Control of fermentation duration and pH to orient biochemicals and biofuels production from cheese whey [J].
Asunis, F. ;
De Gioannis, G. ;
Isipato, M. ;
Muntoni, A. ;
Polettini, A. ;
Pomi, R. ;
Rossi, A. ;
Spiga, D. .
BIORESOURCE TECHNOLOGY, 2019, 289
[6]   Continuous fermentative hydrogen production from cheese whey wastewater under thermophilic anaerobic conditions [J].
Azbar, Nuri ;
Dokgoz, F. Tuba Cetinkaya ;
Keskin, Tugba ;
Korkmaz, Kemal S. ;
Syed, Hamid M. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (17) :7441-7447
[7]   The RAST server: Rapid annotations using subsystems technology [J].
Aziz, Ramy K. ;
Bartels, Daniela ;
Best, Aaron A. ;
DeJongh, Matthew ;
Disz, Terrence ;
Edwards, Robert A. ;
Formsma, Kevin ;
Gerdes, Svetlana ;
Glass, Elizabeth M. ;
Kubal, Michael ;
Meyer, Folker ;
Olsen, Gary J. ;
Olson, Robert ;
Osterman, Andrei L. ;
Overbeek, Ross A. ;
McNeil, Leslie K. ;
Paarmann, Daniel ;
Paczian, Tobias ;
Parrello, Bruce ;
Pusch, Gordon D. ;
Reich, Claudia ;
Stevens, Rick ;
Vassieva, Olga ;
Vonstein, Veronika ;
Wilke, Andreas ;
Zagnitko, Olga .
BMC GENOMICS, 2008, 9 (1)
[8]   Debottlenecking the biological hydrogen production pathway of dark fermentation: insight into the impact of strain improvement [J].
Cao, Yujin ;
Liu, Hui ;
Liu, Wei ;
Guo, Jing ;
Xian, Mo .
MICROBIAL CELL FACTORIES, 2022, 21 (01)
[9]   Hydrogen Production by Dark Fermentation [J].
Cardoso, Vicelma L. ;
Romao, Betania B. ;
Silva, Felipe T. M. ;
Santos, Julia G. ;
Batista, Fabiana R. X. ;
Ferreira, Juliana S. .
IBIC2014: 4TH INTERNATIONAL CONFERENCE ON INDUSTRIAL BIOTECHNOLOGY, 2014, 38 :481-486
[10]   Different start-up strategies to enhance biohydrogen production from cheese whey in UASB reactors [J].
Carrillo-Reyes, Julian ;
Celis, Lourdes B. ;
Alatriste-Mondragon, Felipe ;
Razo-Flores, Elias .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (07) :5591-5601