Interior pointwise C2,α regularity for fully nonlinear elliptic equations

被引:2
|
作者
Wu, Duan [1 ]
Niu, Pengcheng [1 ]
机构
[1] Northwestern Polytech Univ, Sch Math & Stat, Xian 710129, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
C-2; C-alpha regularity; Fully nonlinear elliptic equation; Viscosity solution; VISCOSITY SOLUTIONS; C-1; C-ALPHA; CONVEX;
D O I
10.1016/j.na.2022.113159
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we prove the interior C-2,C-alpha regularity for viscosity solutions of fully nonlinear uniformly elliptic equations with the ellipticity constants close to each other enough. In particular, the regularity for Isaacs equations can be derived. The main idea is the compactness technique. (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] A SURVEY ON THE EXISTENCE, UNIQUENESS AND REGULARITY QUESTIONS TO FULLY NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS
    Tyagi, J.
    Verma, R. B.
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2016, 8 (02): : 135 - 205
  • [22] Weighted regularity estimates in Orlicz spaces for fully nonlinear elliptic equations
    Byun, Sun-Sig
    Lee, Mikyoung
    Ok, Jihoon
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 162 : 178 - 196
  • [23] Boundary Lipschitz Regularity and the Hopf Lemma for Fully Nonlinear Elliptic Equations
    Yuanyuan Lian
    Kai Zhang
    Potential Analysis, 2024, 60 : 1231 - 1247
  • [24] Global regularity results for a class of singular/degenerate fully nonlinear elliptic equations
    Baasandorj, Sumiya
    Byun, Sun-Sig
    Lee, Ki-Ahm
    Lee, Se-Chan
    MATHEMATISCHE ZEITSCHRIFT, 2024, 306 (01)
  • [25] Boundary Lipschitz regularity and the Hopf lemma on Reifenberg domains for fully nonlinear elliptic equations
    Lian, Yuanyuan
    Xu, Wenxiu
    Zhang, Kai
    MANUSCRIPTA MATHEMATICA, 2021, 166 (3-4) : 343 - 357
  • [26] C1,α-regularity for solutions of degenerate/singular fully nonlinear parabolic equations
    Lee, Ki-Ahm
    Lee, Se-Chan
    Yun, Hyungsung
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2024, 181 : 152 - 189
  • [27] INTERIOR C1,α REGULARITY OF WEAK SOLUTIONS FOR A CLASS OF QUASILINEAR ELLIPTIC EQUATIONS
    Yao, Fengping
    Zhou, Shulin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (05): : 1635 - 1649
  • [28] Interior regularity results for fractional elliptic equations that degenerate with the gradient
    dos Prazeres, Disson
    Topp, Erwin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 300 : 814 - 829
  • [29] Regularity theory for Ln-viscosity solutions to fully nonlinear elliptic equations with asymptotical approximate
    Huang, Qingbo
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2019, 36 (07): : 1869 - 1902
  • [30] Weighted Lorentz estimates for fully nonlinear elliptic equations with oblique boundary data
    Zhang, Junjie
    Zheng, Shenzhou
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2022, 8 (01) : 255 - 281