Generative Adversarial Network Based on LSTM and Convolutional Block Attention Module for Industrial Smoke Image Recognition

被引:1
作者
Li, Dahai [1 ]
Yang, Rui [1 ]
Chen, Su [2 ]
机构
[1] Zhengzhou Univ Sci & Technol, Sch Elect & Elect Engn, Zhengzhou 450064, Peoples R China
[2] Henan Vocat Coll Water Conservancy & Environm, Dept Mech & Elect Engn, Zhengzhou 450002, Peoples R China
关键词
industrial smoke image recognition; generative adversarial network; LSTM; convolutional block attention module; data enhancement; MODEL;
D O I
10.2298/CSIS221125027L
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The industrial smoke scene is complex and diverse, and the cost of labeling a large number of smoke data is too high. Under the existing conditions, it is very challenging to efficiently use a large number of existing scene annotation data and network models to complete the image classification and recognition task in the industrial smoke scene. Traditional deep learn-based networks can be directly and efficiently applied to normal scene classification, but there will be a large loss of accuracy in industrial smoke scene. Therefore, we propose a novel generative adversarial network based on LSTM and convolutional block attention module for industrial smoke image recognition. In this paper, a low-cost data enhancement method is used to effectively reduce the difference in the pixel field of the image. The smoke image is input into the LSTM in generator and encoded as a hidden layer vector. This hidden layer vector is then entered into the discriminator. Meanwhile, a convolutional block attention module is integrated into the discriminator to improve the feature self-extraction ability of the discriminator model, so as to improve the performance of the whole smoke image recognition network. Experiments are carried out on real diversified industrial smoke scene data, and the results show that the proposed method achieves better image classification and recognition effect. In particular, the F scores are all above 89%, which is the best among all the results.
引用
收藏
页码:1707 / 1728
页数:22
相关论文
共 50 条
  • [41] Weakly Supervised Attention Inference Generative Adversarial Network for Text-to-Image
    Mei, Lingrui
    Ran, Xuming
    Hu, Jin
    2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 1574 - 1578
  • [42] Recommendation System Based on Generative Adversarial Network with Graph Convolutional Layers
    Sasagawa, Takato
    Kawai, Shin
    Nobuhara, Hajime
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2021, 25 (04) : 389 - 396
  • [43] SASEGAN-TCN: Speech enhancement algorithm based on self-attention generative adversarial network and temporal convolutional network
    Lv R.
    Chen N.
    Cheng S.
    Fan G.
    Rao L.
    Song X.
    Lv W.
    Yang D.
    Mathematical Biosciences and Engineering, 2024, 21 (03) : 3860 - 3875
  • [44] Convolutional block attention based network for copy-move image forgery detection
    M. Sabeena
    Lizy Abraham
    Multimedia Tools and Applications, 2024, 83 : 2383 - 2405
  • [45] Convolutional block attention based network for copy-move image forgery detection
    Sabeena, M.
    Abraham, Lizy
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (1) : 2383 - 2405
  • [46] Infrared and Visible Image Fusion Method via Interactive Attention-based Generative Adversarial Network
    Wang Zhishe
    Shag Wenyu
    Yang Fengbao
    Chen Yanlin
    ACTA PHOTONICA SINICA, 2022, 51 (04) : 310 - 320
  • [47] Image super-resolution reconstruction based on generative adversarial network model with feedback and attention mechanisms
    Wang, Yongqiang
    Li, Xue
    Nan, Fangzhe
    Liu, Feng
    Li, Hua
    Wang, Haitao
    Qian, Yurong
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (05) : 6633 - 6652
  • [48] Image super-resolution reconstruction based on generative adversarial network model with feedback and attention mechanisms
    Yongqiang Wang
    Xue Li
    Fangzhe Nan
    Feng Liu
    Hua Li
    Haitao Wang
    Yurong Qian
    Multimedia Tools and Applications, 2022, 81 : 6633 - 6652
  • [49] Deformable medical image registration based on unsupervised generative adversarial network integrating dual attention mechanisms
    Li, Meng
    Wang, Yuwen
    Zhang, Fuchun
    Li, Guoqiang
    Hu, Shunbo
    Wu, Liang
    2021 14TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2021), 2021,
  • [50] Image Text Deblurring Method Based on Generative Adversarial Network
    Wu, Chunxue
    Du, Haiyan
    Wu, Qunhui
    Zhang, Sheng
    ELECTRONICS, 2020, 9 (02)