Generative Adversarial Network Based on LSTM and Convolutional Block Attention Module for Industrial Smoke Image Recognition

被引:1
作者
Li, Dahai [1 ]
Yang, Rui [1 ]
Chen, Su [2 ]
机构
[1] Zhengzhou Univ Sci & Technol, Sch Elect & Elect Engn, Zhengzhou 450064, Peoples R China
[2] Henan Vocat Coll Water Conservancy & Environm, Dept Mech & Elect Engn, Zhengzhou 450002, Peoples R China
关键词
industrial smoke image recognition; generative adversarial network; LSTM; convolutional block attention module; data enhancement; MODEL;
D O I
10.2298/CSIS221125027L
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The industrial smoke scene is complex and diverse, and the cost of labeling a large number of smoke data is too high. Under the existing conditions, it is very challenging to efficiently use a large number of existing scene annotation data and network models to complete the image classification and recognition task in the industrial smoke scene. Traditional deep learn-based networks can be directly and efficiently applied to normal scene classification, but there will be a large loss of accuracy in industrial smoke scene. Therefore, we propose a novel generative adversarial network based on LSTM and convolutional block attention module for industrial smoke image recognition. In this paper, a low-cost data enhancement method is used to effectively reduce the difference in the pixel field of the image. The smoke image is input into the LSTM in generator and encoded as a hidden layer vector. This hidden layer vector is then entered into the discriminator. Meanwhile, a convolutional block attention module is integrated into the discriminator to improve the feature self-extraction ability of the discriminator model, so as to improve the performance of the whole smoke image recognition network. Experiments are carried out on real diversified industrial smoke scene data, and the results show that the proposed method achieves better image classification and recognition effect. In particular, the F scores are all above 89%, which is the best among all the results.
引用
收藏
页码:1707 / 1728
页数:22
相关论文
共 50 条
  • [31] An Encoder Generative Adversarial Network for Multi-modality Image Recognition
    Chen, Yu
    Yang, Chunling
    Zhu, Min
    Yang, ShiYan
    IECON 2018 - 44TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2018, : 2689 - 2694
  • [32] Face Image Inpainting Based on Generative Adversarial Network
    Gao, Xinyi
    Minh Nguyen
    Yan, Wei Qi
    PROCEEDINGS OF THE 2021 36TH INTERNATIONAL CONFERENCE ON IMAGE AND VISION COMPUTING NEW ZEALAND (IVCNZ), 2021,
  • [33] Deep Convolutional Generative Adversarial Network-Based Food Recognition Using Partially Labeled Data
    Mandal, Bappaditya
    Puhan, Niladri B.
    Verma, Avijit
    IEEE SENSORS LETTERS, 2019, 3 (02)
  • [34] AMFNet: An attention-guided generative adversarial network for multi-model image fusion
    Wang, Jing
    Yu, Long
    Tian, Shengwei
    Wu, Weidong
    Zhang, Dezhi
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 78
  • [35] CT and MRI fusion based on generative adversarial network and convolutional neural networks under image enhancement
    Liu Y.
    Li J.
    Wang Y.
    Cai W.
    Chen F.
    Liu W.
    Mao X.
    Gan K.
    Wang R.
    Sun D.
    Qiu H.
    Liu B.
    Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2023, 40 (02): : 208 - 216
  • [36] Lightweight multi-scale generative adversarial network with attention for image denoising
    Hu, Xuegang
    Zhao, Wei
    MULTIMEDIA SYSTEMS, 2024, 30 (05)
  • [37] Pyramidal convolution attention generative adversarial network with data augmentation for image denoising
    Qiongshuai Lyu
    Dongliang Xia
    Yaling Liu
    Xiaojing Yang
    Rui Li
    Soft Computing, 2021, 25 : 9273 - 9284
  • [38] Cascading residual–residual attention generative adversarial network for image super resolution
    Jianqiang Chen
    Yali Zhang
    Xiang Hu
    Calvin Yu-Chian Chen
    Soft Computing, 2021, 25 : 9651 - 9662
  • [39] Pyramidal convolution attention generative adversarial network with data augmentation for image denoising
    Lyu, Qiongshuai
    Xia, Dongliang
    Liu, Yaling
    Yang, Xiaojing
    Li, Rui
    SOFT COMPUTING, 2021, 25 (14) : 9273 - 9284
  • [40] Microexpression Recognition Method Based on ADP-DSTN Feature Fusion and Convolutional Block Attention Module
    Song, Junfang
    Lei, Shanzhong
    Wu, Wenzhe
    ELECTRONICS, 2024, 13 (20)