Generative Adversarial Network Based on LSTM and Convolutional Block Attention Module for Industrial Smoke Image Recognition

被引:1
作者
Li, Dahai [1 ]
Yang, Rui [1 ]
Chen, Su [2 ]
机构
[1] Zhengzhou Univ Sci & Technol, Sch Elect & Elect Engn, Zhengzhou 450064, Peoples R China
[2] Henan Vocat Coll Water Conservancy & Environm, Dept Mech & Elect Engn, Zhengzhou 450002, Peoples R China
关键词
industrial smoke image recognition; generative adversarial network; LSTM; convolutional block attention module; data enhancement; MODEL;
D O I
10.2298/CSIS221125027L
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The industrial smoke scene is complex and diverse, and the cost of labeling a large number of smoke data is too high. Under the existing conditions, it is very challenging to efficiently use a large number of existing scene annotation data and network models to complete the image classification and recognition task in the industrial smoke scene. Traditional deep learn-based networks can be directly and efficiently applied to normal scene classification, but there will be a large loss of accuracy in industrial smoke scene. Therefore, we propose a novel generative adversarial network based on LSTM and convolutional block attention module for industrial smoke image recognition. In this paper, a low-cost data enhancement method is used to effectively reduce the difference in the pixel field of the image. The smoke image is input into the LSTM in generator and encoded as a hidden layer vector. This hidden layer vector is then entered into the discriminator. Meanwhile, a convolutional block attention module is integrated into the discriminator to improve the feature self-extraction ability of the discriminator model, so as to improve the performance of the whole smoke image recognition network. Experiments are carried out on real diversified industrial smoke scene data, and the results show that the proposed method achieves better image classification and recognition effect. In particular, the F scores are all above 89%, which is the best among all the results.
引用
收藏
页码:1707 / 1728
页数:22
相关论文
共 50 条
  • [1] Image Synthesis with a Convolutional Capsule Generative Adversarial Network
    Bass, Cher
    Dai, Tianhong
    Billot, Benjamin
    Arulkumaran, Kai
    Creswell, Antonia
    Clopath, Claudia
    De Paola, Vincenzo
    Bharath, Anil Anthony
    INTERNATIONAL CONFERENCE ON MEDICAL IMAGING WITH DEEP LEARNING, VOL 102, 2019, 102 : 39 - 62
  • [2] Unsupervised image-to-image translation with multiscale attention generative adversarial network
    Wang, Fasheng
    Zhang, Qing
    Zhao, Qianyi
    Wang, Mengyin
    Sun, Fuming
    APPLIED INTELLIGENCE, 2024, 54 (08) : 6558 - 6578
  • [3] Low-Light Image Enhancement with an Anti-Attention Block-Based Generative Adversarial Network
    Qiao, Junbo
    Wang, Xing
    Chen, Ji
    Jian, Muwei
    ELECTRONICS, 2022, 11 (10)
  • [4] RDAGAN: Residual Dense Module and Attention-Guided Generative Adversarial Network for infrared image generation
    Zhou, Tianwei
    Tang, Yanfeng
    Zhan, Weida
    Chen, Yu
    Han, Yueyi
    Han, Deng
    INFRARED PHYSICS & TECHNOLOGY, 2025, 145
  • [5] Underwater Image Enhancement Based on Pyramid Attention Mechanism and Generative Adversarial Network
    Wang Yue
    Wang Dexing
    Yuan Hongchun
    Wu Ruoyou
    Gong Peng
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (16)
  • [6] Image motion deblurring via attention generative adversarial network
    Zhang, Yucun
    Li, Tao
    Li, Qun
    Fu, Xianbin
    Kong, Tao
    COMPUTERS & GRAPHICS-UK, 2023, 111 : 122 - 132
  • [7] Boosting attention fusion generative adversarial network for image denoising
    Lyu, Qiongshuai
    Guo, Min
    Ma, Miao
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (10) : 4833 - 4847
  • [8] Boosting attention fusion generative adversarial network for image denoising
    Qiongshuai Lyu
    Min Guo
    Miao Ma
    Neural Computing and Applications, 2021, 33 : 4833 - 4847
  • [9] Research on Embroidery Image Restoration Based on Improved Deep Convolutional Generative Adversarial Network
    Liu Yixuan
    Ge Guangying
    Qi Zhenling
    Li Zhenxuan
    Sun Fulin
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (20)
  • [10] Blind restoration of astronomical image based on deep attention generative adversarial neural network
    Luo, Lin
    Bao, Jiaqi
    Li, Jinlong
    Gao, Xiaorong
    OPTICAL ENGINEERING, 2022, 61 (01)