Stable higher-charge vortex solitons in the cubic-quintic medium with a ring potential

被引:21
作者
Dong, Liangwei [1 ]
Fan, Mingjing [2 ]
Malomed, Boris A. [3 ,4 ]
机构
[1] Zhejiang Univ Sci & Technol, Dept Phys, Hangzhou 310023, Peoples R China
[2] Shaanxi Univ Sci & Technol, Dept Phys, Xian 710021, Peoples R China
[3] Tel Aviv Univ, Fac Engn, Sch Elect Engn, Dept Phys Elect, IL-69978 Tel Aviv, Israel
[4] Univ Tarapaca, Inst Alta Invest, Casilla 7D, Arica, Chile
基金
以色列科学基金会;
关键词
OPTICAL VORTICES;
D O I
10.1364/OL.500054
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We put forward a model for trapping stable optical vortex solitons (VSs) with high topological charges m. The cubic-quintic nonlinear medium with an imprinted ring shaped modulation of the refractive index is shown to support two branches of VSs, which are controlled by the radius, width, and depth of the modulation profile. While the lower-branch VSs are unstable in their nearly whole existence domain, the upper branch is completely stable. Vortex solitons with m <= 12 obey the anti-Vakhitov-Kolokolov stability criterion. The results suggest possibilities for the creation of stable narrow optical VSs with a low power, carrying higher vorticities. (c) 2023 Optica Publishing Group
引用
收藏
页码:4817 / 4820
页数:4
相关论文
共 39 条
[1]  
Berezhiani VI, 2001, PHYS REV E, V64, DOI 10.1103/PhysRevE.64.057601
[2]   Optical vortices and vortex solitons [J].
Desyatnikov, AS ;
Kivshar, YS ;
Torner, L .
PROGRESS IN OPTICS, VOL 47, 2005, 47 :291-391
[3]   Vortex Solitons in Twisted Circular Waveguide Arrays [J].
Dong, Liangwei ;
Kartashov, Yaroslav, V ;
Torner, Lluis ;
Ferrando, Albert .
PHYSICAL REVIEW LETTERS, 2022, 129 (12)
[4]   Higher-charged vortices in mixed linear-nonlinear circular arrays [J].
Dong, Liangwei ;
Li, Huijun ;
Huang, Changming ;
Zhong, Shunsheng ;
Li, Chunyan .
PHYSICAL REVIEW A, 2011, 84 (04)
[5]   Solitons and vortices in nonlinear potential wells [J].
Dror, Nir ;
Malomed, Boris A. .
JOURNAL OF OPTICS, 2016, 18 (01)
[6]   Vortex solitons in photonic crystal fibers [J].
Ferrando, A ;
Zacarés, M ;
de Córdoba, PF ;
Binosi, D ;
Monsoriu, JA .
OPTICS EXPRESS, 2004, 12 (05) :817-822
[7]  
Josserand C, 1997, PHYS REV LETT, V78, P1215, DOI 10.1103/PhysRevLett.78.1215
[8]   Topological States in Partially-PT-Symmetric Azimuthal Potentials [J].
Kartashov, Yaroslav V. ;
Konotop, Vladimir V. ;
Torner, Lluis .
PHYSICAL REVIEW LETTERS, 2015, 115 (19)
[9]   Solitons in nonlinear lattices [J].
Kartashov, Yaroslav V. ;
Malomed, Boris A. ;
Torner, Lluis .
REVIEWS OF MODERN PHYSICS, 2011, 83 (01) :247-305
[10]   Soliton topology versus discrete symmetry in optical lattices [J].
Kartashov, YV ;
Ferrando, A ;
Egorov, AA ;
Torner, L .
PHYSICAL REVIEW LETTERS, 2005, 95 (12)