Semantically consistent multi-view representation learning

被引:10
|
作者
Zhou, Yiyang [1 ]
Zheng, Qinghai [2 ]
Bai, Shunshun [1 ]
Zhu, Jihua [1 ]
机构
[1] Jiaotong Univ, Sch Software Engn, Xian 710049, Peoples R China
[2] Fuzhou Univ, Coll Comp & Data Sci, Fuzhou 350108, Peoples R China
关键词
Multi-view representation learning; Contrastive learning; Semantic consensus information;
D O I
10.1016/j.knosys.2023.110899
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we devote ourselves to the challenging task of Unsupervised Multi-view Representation Learning (UMRL), which requires learning a unified feature representation from multiple views in an unsupervised manner. Existing UMRL methods mainly focus on the learning process within the feature space while ignoring the valuable semantic information hidden in different views. To address this issue, we propose a novel approach called Semantically Consistent Multi-view Representation Learning (SCMRL), which aims to excavate underlying multi-view semantic consensus information and utilize it to guide the unified feature representation learning process. Specifically, SCMRL consists of a within view reconstruction module and a unified feature representation learning module. These modules are elegantly integrated using a contrastive learning strategy, which serves to align the semantic labels of both view-specific feature representations and the learned unified feature representation simultaneously. This integration allows SCMRL to effectively leverage consensus information in the semantic space, thereby constraining the learning process of the unified feature representation. Compared with several state-of-the-art algorithms, extensive experiments demonstrate its superiority. Our code is released on https://github.com/YiyangZhou/SCMRL.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Reconstructed Graph Constrained Auto-Encoders for Multi-View Representation Learning
    Gou, Jianping
    Xie, Nannan
    Yuan, Yunhao
    Du, Lan
    Ou, Weihua
    Yi, Zhang
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 1319 - 1332
  • [22] Enhancing Vulnerability Prioritization in Cloud Computing Using Multi-View Representation Learning
    Ullman, Steven
    Samtani, Sagar
    Zhu, Hongyi
    Lazarine, Ben
    Chen, Hsinchun
    Nunamaker Jr, Jay F.
    JOURNAL OF MANAGEMENT INFORMATION SYSTEMS, 2024, 41 (03) : 708 - 743
  • [23] Mapping individual differences in cortical architecture using multi-view representation learning
    Sellami, Akrem
    Dupe, Francois-Xavier
    Cagna, Bastien
    Kadri, Hachem
    Ayache, Stephane
    Artieres, Thierry
    Takerkart, Sylvain
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [24] sEMG-Based Multi-view Feature-Constrained Representation Learning
    Yan, Shuo
    Dai, Hongjun
    Wang, Ruomei
    Zhang, Long
    Wang, Guan
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, KSEM 2024, 2024, 14884 : 322 - 333
  • [25] Few-Shot Action Recognition via Multi-View Representation Learning
    Wang, Xiao
    Lu, Yang
    Yu, Wanchuan
    Pang, Yanwei
    Wang, Hanzi
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (09) : 8522 - 8535
  • [26] Deep Contrastive Multi-View Subspace Clustering With Representation and Cluster Interactive Learning
    Yu, Xuejiao
    Jiang, Yi
    Chao, Guoqing
    Chu, Dianhui
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2025, 37 (01) : 188 - 199
  • [27] Contrastive and adversarial regularized multi-level representation learning for incomplete multi-view clustering
    Wang, Haiyue
    Zhang, Wensheng
    Ma, Xiaoke
    NEURAL NETWORKS, 2024, 172
  • [28] Prototype Matching Learning for Incomplete Multi-View Clustering
    Yuan, Honglin
    Sun, Yuan
    Zhou, Fei
    Wen, Jing
    Yuan, Shihua
    You, Xiaojian
    Ren, Zhenwen
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2025, 34 : 828 - 841
  • [29] Contrastive Multi-View Kernel Learning
    Liu, Jiyuan
    Liu, Xinwang
    Yang, Yuexiang
    Liao, Qing
    Xia, Yuanqing
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (08) : 9552 - 9566
  • [30] Co-embedding: a semi-supervised multi-view representation learning approach
    Jia, Xiaodong
    Jing, Xiao-Yuan
    Zhu, Xiaoke
    Cai, Ziyun
    Hu, Chang-Hui
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (06) : 4437 - 4457