A bio-inspired positional embedding network for transformer-based models

被引:2
|
作者
Tang, Xue-song [1 ,3 ]
Hao, Kuangrong [1 ,3 ,4 ]
Wei, Hui [2 ,5 ]
机构
[1] 2999 Renmin North Rd, Shanghai 201620, Peoples R China
[2] 2005 Songhu Rd, Shanghai 200434, Peoples R China
[3] Donghua Univ, Coll Informat Sci & Technol, Shanghai, Peoples R China
[4] Minist Educ, Engn Res Ctr Digitized Text Apparel Technol, Shanghai, Peoples R China
[5] Fudan Univ, Sch Comp Sci, Lab Algorithms Cognit Models, Shanghai, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Transformers; Dorsal pathway modeling; Image classification; Position embedding; Zero padding;
D O I
10.1016/j.neunet.2023.07.015
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Owing to the progress of transformer-based networks, there have been significant improvements in the performance of vision models in recent years. However, there is further potential for improvement in positional embeddings that play a crucial role in distinguishing information across different positions. Based on the biological mechanisms of human visual pathways, we propose a positional embedding network that adaptively captures position information by modeling the dorsal pathway, which is responsible for spatial perception in human vision. Our proposed double-stream architecture leverages large zero-padding convolutions to learn local positional features and utilizes transformers to learn global features, effectively capturing the interaction between dorsal and ventral pathways. To evaluate the effectiveness of our method, we implemented experiments on various datasets, employing differentiated designs. Our statistical analysis demonstrates that the simple implementation significantly enhances image classification performance, and the observed trends demonstrate its biological plausibility.& COPY; 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页码:204 / 214
页数:11
相关论文
共 50 条
  • [31] Enhancing Address Data Integrity using Transformer-Based Language Models
    Kurklu, Omer Faruk
    Akagiunduz, Erdem
    32ND IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU 2024, 2024,
  • [32] Performance Comparison of Vision Transformer-Based Models in Medical Image Classification
    Kanca, Elif
    Ayas, Selen
    Kablan, Elif Baykal
    Ekinci, Murat
    2023 31ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2023,
  • [33] A Transformer-Based Signal Denoising Network for AoA Estimation in NLoS Environments
    Liu, Junchen
    Wang, Tianyu
    Li, Yuxiao
    Li, Cheng
    Wang, Yi
    Shen, Yuan
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (10) : 2336 - 2339
  • [34] Performance Comparison of Transformer-Based Models on Twitter Health Mention Classification
    Khan, Pervaiz Iqbal
    Razzak, Imran
    Dengel, Andreas
    Ahmed, Sheraz
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2023, 10 (03) : 1140 - 1149
  • [35] A Transformer-Based Network for Estimating Blood Pressure Using Facial Videos
    Manullang, Martin Clinton Tosima
    Lin, Yuan-Hsiang
    Chou, Nai-Kuan
    IEEE SENSORS JOURNAL, 2025, 25 (01) : 1969 - 1977
  • [36] ETDNet: Efficient Transformer-Based Detection Network for Surface Defect Detection
    Zhou, Hantao
    Yang, Rui
    Hu, Runze
    Shu, Chang
    Tang, Xiaochu
    Li, Xiu
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [37] A Transformer-Based Deep Learning Network for Underwater Acoustic Target Recognition
    Feng, Sheng
    Zhu, Xiaoqian
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [38] Transformer-Based Amharic-to-English Machine Translation With Character Embedding and Combined Regularization Techniques
    Asefa, Surafiel Habib
    Assabie, Yaregal
    IEEE ACCESS, 2025, 13 : 1090 - 1105
  • [39] Transformer-Based Multiscale Reconstruction Network for Defect Detection of Infrared Images
    Wei, Changyun
    Han, Hui
    Wu, Zhichao
    Xia, Yu
    Ji, Ze
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [40] Transfer Learning of Transformer-Based Speech Recognition Models from Czech to Slovak
    Lehecka, Jan
    Psutka, Josef, V
    Psutka, Josef
    TEXT, SPEECH, AND DIALOGUE, TSD 2023, 2023, 14102 : 328 - 338