Comparison of PlanetScope, Sentinel-2, and landsat 8 data in soybean yield estimation within-field variability with random forest regression

被引:6
|
作者
Amankulova, Khilola [1 ,3 ]
Farmonov, Nizom [1 ]
Akramova, Parvina [2 ]
Tursunov, Ikrom [2 ]
Mucsi, Laszlo [1 ]
机构
[1] Univ Szeged, Dept Geoinformat Phys & Environm Geog, Egyet Utca 2, H-6722 Szeged, Hungary
[2] TIIAME NRU Bukhara Inst Nat Resources Management, Dept Hydrol & Ecol, Gazli Ave 32, Bukhara, Uzbekistan
[3] Egyet utca 2, H-6722 Szeged, Hungary
关键词
Soybean yield; Remote sensing; PlanetScope; Sentinel-2; Landsat; 8; Random forest; CROP YIELD; VEGETATION; WHEAT; PREDICTION; SATELLITE; CORN;
D O I
10.1016/j.heliyon.2023.e17432
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Accurate timely and early-season crop yield estimation within the field variability is important for precision farming and sustainable management applications. Therefore, the ability to estimate the within-field variability of grain yield is crucial for ensuring food security worldwide, especially under climate change. Several Earth observation systems have thus been developed to monitor crops and predict yields. Despite this, new research is required to combine multiplatform data integration, advancements in satellite technologies, data processing, and the application of this discipline to agricultural practices. This study provides further developments in soybean yield estimation by comparing multisource satellite data from PlanetScope (PS), Sentinel-2 (S2), and Landsat 8 (L8) and introducing topographic and meteorological variables. Herein, a new method of combining soybean yield, global positioning systems, harvester data, climate, topographic variables, and remote sensing images has been demonstrated. Soybean yield shape points were obtained from a combine-harvester-installed GPS and yield monitoring system from seven fields over the 2021 season. The yield estimation models were trained and validated using random forest, and four vegetation indices were tested. The result showed that soybean yield can be accurately predicted at 3-, 10-, and 30-m resolutions with mean absolute error (MAE) value of 0.091 t/ha for PS, 0.118 t/ha for S2, and 0.120 t/ha for L8 data (root mean square error (RMSE) of 0.111, 0.076). The combination of the environmental data with the original bands provided further improvements and an accurate yield estimation model within the soybean yield variability with MAE of 0.082 t/ha for PS, 0.097 t/ha for S2, and 0.109 t/ha for L8 (RMSE of 0.094, 0.069, and 0.108 t/ha). The results showed that the optimal date to predict the soybean yield within the field scale was approximately 60 or 70 days before harvesting periods during the beginning bloom stage. The developed model can be applied for other crops and locations when suitable training yield data, which are critical for precision farming, are available.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] A Comparison of Random Forest Algorithm-Based Forest Extraction with GF-1 WFV, Landsat 8 and Sentinel-2 Images
    Peng, Xueli
    He, Guojin
    She, Wenqing
    Zhang, Xiaomei
    Wang, Guizhou
    Yin, Ranyu
    Long, Tengfei
    REMOTE SENSING, 2022, 14 (21)
  • [22] Estimating grassland vegetation cover with remote sensing: A comparison between Landsat-8, Sentinel-2 and PlanetScope imagery
    Andreatta, Davide
    Gianelle, Damiano
    Scotton, Michele
    Dalponte, Michele
    ECOLOGICAL INDICATORS, 2022, 141
  • [23] Estimation of forest aboveground biomass using combination of Landsat 8 and Sentinel-1A data with random forest regression algorithm in Himalayan Foothills
    Purohit, Saurabh
    Aggarwal, S. P.
    Patel, N. R.
    TROPICAL ECOLOGY, 2021, 62 (02) : 288 - 300
  • [24] Estimation of forest aboveground biomass using combination of Landsat 8 and Sentinel-1A data with random forest regression algorithm in Himalayan Foothills
    Saurabh Purohit
    S. P. Aggarwal
    N. R. Patel
    Tropical Ecology, 2021, 62 : 288 - 300
  • [25] Random Forest-Based Soil Moisture Estimation Using Sentinel-2, Landsat-8/9, and UAV-Based Hyperspectral Data
    Shokati, Hadi
    Mashal, Mahmoud
    Noroozi, Aliakbar
    Abkar, Ali Akbar
    Mirzaei, Saham
    Mohammadi-Doqozloo, Zahra
    Taghizadeh-Mehrjardi, Ruhollah
    Khosravani, Pegah
    Nabiollahi, Kamal
    Scholten, Thomas
    REMOTE SENSING, 2024, 16 (11)
  • [26] Comparing leaf area index estimates in a Mediterranean forest using field measurements, Landsat 8, and Sentinel-2 data
    Sebastiani, Alessandro
    Salvati, Riccardo
    Manes, Fausto
    ECOLOGICAL PROCESSES, 2023, 12 (01)
  • [27] Comparing leaf area index estimates in a Mediterranean forest using field measurements, Landsat 8, and Sentinel-2 data
    Alessandro Sebastiani
    Riccardo Salvati
    Fausto Manes
    Ecological Processes, 2023, (00) : 402 - 414
  • [28] THE USE OF LANDSAT 8 AND SENTINEL-2 DATA AND METEROLOGICAL OBSERVATIONS FOR WINTER WHEAT YIELD ASSESSMENT
    Skakun, S.
    Franch, B.
    Vermote, E.
    Roger, J. -C.
    Kussul, N.
    Masek, J.
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 6291 - 6294
  • [29] Comparing leaf area index estimates in a Mediterranean forest using field measurements, Landsat 8, and Sentinel-2 data
    Alessandro Sebastiani
    Riccardo Salvati
    Fausto Manes
    Ecological Processes, 2023, 12 (02) : 187 - 199
  • [30] Comparing leaf area index estimates in a Mediterranean forest using field measurements, Landsat 8, and Sentinel-2 data
    Alessandro Sebastiani
    Riccardo Salvati
    Fausto Manes
    Ecological Processes, 12