Stereo SLAM in Dynamic Environments Using Semantic Segmentation

被引:2
|
作者
Ai, Yongbao [1 ]
Sun, Qianchong [1 ]
Xi, Zhipeng [1 ]
Li, Na [1 ]
Dong, Jianmeng [1 ]
Wang, Xiang [1 ]
机构
[1] Natl Innovat Inst Def Technol, Beijing 100071, Peoples R China
关键词
stereo SLAM; semantic segmentation; moving object detection; dynamic scenarios; SIMULTANEOUS LOCALIZATION; VISION;
D O I
10.3390/electronics12143112
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As we all know, many dynamic objects appear almost continuously in the real world that are immensely capable of impairing the performance of the majority of vision-based SLAM systems based on the static-world assumption. In order to improve the robustness and accuracy of visual SLAM in high-dynamic environments, a real-time and robust stereo SLAM system for dynamic scenes was proposed. To weaken the influence of dynamic content, the moving-object detection method was put forward in our visual odometry, and then the semantic segmentation network was combined in our stereo SLAM to extract pixel-level contours of dynamic objects. Then, the influences of dynamic objects were significantly weakened and the performance of our system increased markedly in dynamic, complex, and crowed city spaces. Following experiments with both the KITTI Odometry dataset and in a real-life scene, the results showed that our method could dramatically decrease the tracking error or drift, and improve the robustness and stability of our stereo SLAM in high dynamic outdoor scenarios.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] MOLO-SLAM: A Semantic SLAM for Accurate Removal of Dynamic Objects in Agricultural Environments
    Lv, Jinhong
    Yao, Beihuo
    Guo, Haijun
    Gao, Changlun
    Wu, Weibin
    Li, Junlin
    Sun, Shunli
    Luo, Qing
    AGRICULTURE-BASEL, 2024, 14 (06):
  • [42] SIA-SLAM: a robust visual SLAM associated with semantic information in dynamic environments
    Liu, Qiang
    Yuan, Jie
    Kuang, Benfa
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (18) : 53531 - 53547
  • [43] SIA-SLAM: a robust visual SLAM associated with semantic information in dynamic environments
    Qiang Liu
    Jie Yuan
    Benfa Kuang
    Multimedia Tools and Applications, 2024, 83 : 53531 - 53547
  • [44] Pixel-Wise Motion Segmentation for SLAM in Dynamic Environments
    Hempel, Thorsten
    Al-Hamadi, Ayoub
    IEEE ACCESS, 2020, 8 : 164521 - 164528
  • [45] Dynam-SLAM: An Accurate, Robust Stereo Visual-Inertial SLAM Method in Dynamic Environments
    Yin, Hesheng
    Li, Shaomiao
    Tao, Yu
    Guo, Junlong
    Huang, Bo
    IEEE TRANSACTIONS ON ROBOTICS, 2022,
  • [46] Dynam-SLAM: An Accurate, Robust Stereo Visual-Inertial SLAM Method in Dynamic Environments
    Yin, Hesheng
    Li, Shaomiao
    Tao, Yu
    Guo, Junlong
    Huang, Bo
    IEEE TRANSACTIONS ON ROBOTICS, 2023, 39 (01) : 289 - 308
  • [47] YLS-SLAM: a real-time dynamic visual SLAM based on semantic segmentation
    Feng, Dan
    Yin, Zhenyu
    Wang, Xiaohui
    Zhang, Feiqing
    Wang, Zisong
    INDUSTRIAL ROBOT-THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH AND APPLICATION, 2025, 52 (01): : 106 - 115
  • [48] RSO-SLAM: A Robust Semantic Visual SLAM With Optical Flow in Complex Dynamic Environments
    Qin, Liang
    Wu, Chang
    Chen, Zhenyu
    Kong, Xiaotong
    Lv, Zejie
    Zhao, Zhiqi
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (10) : 14669 - 14684
  • [49] Fusing Semantic Segmentation and Object Detection for Visual SLAM in Dynamic Scenes
    Yu, Peilin
    Guo, Chi
    Liu, Yang
    Zhang, Huyin
    PROCEEDINGS OF 27TH ACM SYMPOSIUM ON VIRTUAL REALITY SOFTWARE AND TECHNOLOGY, VRST 2021, 2021,
  • [50] LiDAR-Based SLAM under Semantic Constraints in Dynamic Environments
    Wang, Weiqi
    You, Xiong
    Zhang, Xin
    Chen, Lingyu
    Zhang, Lantian
    Liu, Xu
    REMOTE SENSING, 2021, 13 (18)