MCL1 Inhibition Overcomes the Aggressiveness Features of Triple-Negative Breast Cancer MDA-MB-231 Cells

被引:6
|
作者
Pratelli, Giovanni [1 ]
Carlisi, Daniela [2 ]
Di Liberto, Diana [2 ]
Notaro, Antonietta [3 ]
Giuliano, Michela [3 ]
D'Anneo, Antonella [3 ]
Lauricella, Marianna [2 ]
Emanuele, Sonia [2 ]
Calvaruso, Giuseppe [3 ]
De Blasio, Anna [3 ]
机构
[1] Univ Palermo, Dept Phys & Chem DiFC Emilio Segre, I-90128 Palermo, Italy
[2] Univ Palermo, Dept Biomed Neurosci & Adv Diagnost BIND, Sect Biochem, I-90127 Palermo, Italy
[3] Univ Palermo, Dept Biol Chem & Pharmaceut Sci & Technol STEBICEF, Lab Biochem, I-90127 Palermo, Italy
关键词
TNBC; anoikis resistance; EMT; cancer stem cells; MCL1; BH3-mimetic; E-CADHERIN; STEM-CELLS; ANOIKIS RESISTANCE; DNA METHYLATION; EXPRESSION; DNMT1; PATHWAYS; ADHESION; AKT;
D O I
10.3390/ijms241311149
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Triple-Negative Breast Cancer (TNBC) is a particularly aggressive subtype among breast cancers (BCs), characterized by anoikis resistance, high invasiveness, and metastatic potential as well as Epithelial-Mesenchymal Transition (EMT) and stemness features. In the last few years, our research focused on the function of MCL1, an antiapoptotic protein frequently deregulated in TNBC. Here, we demonstrate that MCL1 inhibition by A-1210477, a specific BH3-mimetic, promotes anoikis/apoptosis in the MDA-MB-231 cell line, as shown via an increase in proapoptotic markers and caspase activation. Our evidence also shows A-1210477 effects on Focal Adhesions (FAs) impairing the integrin trim and survival signaling pathways, such as FAK, AKT, ERK, NF-& kappa;B, and GSK3 & beta;-inducing anoikis, thus suggesting a putative role of MCL1 in regulation of FA dynamics. Interestingly, in accordance with these results, we observed a reduction in migratory and invasiveness capabilities as confirmed by a decrease in metalloproteinases (MMPs) levels following A-1210477 treatment. Moreover, MCL1 inhibition promotes a reduction in EMT characteristics as demonstrated by the downregulation of Vimentin, MUC1, DNMT1, and a surprising re-expression of E-Cadherin, suggesting a possible mesenchymal-like phenotype reversion. In addition, we also observed the downregulation of stemness makers such as OCT3/4, SOX2, NANOG, as well as CD133, EpCAM, and CD49f. Our findings support the idea that MCL1 inhibition in MDA-MB-231 could be crucial to reduce anoikis resistance, aggressiveness, and metastatic potential and to minimize EMT and stemness features that distinguish TNBC.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Ketoplatin in triple-negative breast cancer cells MDA-MB-231: High efficacy and low toxicity, and positive impact on inflammatory microenvironment
    Ma, Zhong-Ying
    Song, Xue-Qing
    Hu, Juan-Juan
    Wang, Dong-Bo
    Ding, Xiao-Jing
    Liu, Rui-Ping
    Dai, Miao-Liang
    Meng, Fan-Yin
    Xu, Jing-Yuan
    BIOCHEMICAL PHARMACOLOGY, 2021, 188
  • [2] High Thermosensitivity of MDA-MB-231 Cells as a Prerequisite for Thermoradiosensitization of Triple-Negative Breast Cancer in Clinical Practice
    Yakimova, A. O.
    Kabakov, A. E.
    BIOLOGY BULLETIN, 2023, 50 (12) : 3293 - 3300
  • [3] MELK as a potential target to control cell proliferation in triple-negative breast cancer MDA-MB-231 cells
    Li, Gang
    Yang, Mei
    Zuo, Li
    Wang, Mei-Xing
    ONCOLOGY LETTERS, 2018, 15 (06) : 9934 - 9940
  • [4] Isobavachalcone Induces Multiple Cell Death in Human Triple-Negative Breast Cancer MDA-MB-231 Cells
    Wu, Cheng-Zhu
    Gao, Mei-Jia
    Chen, Jie
    Sun, Xiao-Long
    Zhang, Ke-Yi
    Dai, Yi-Qun
    Ma, Tao
    Li, Hong-Mei
    Zhang, Yu-Xin
    MOLECULES, 2022, 27 (20):
  • [5] Synergistic promoting effects of pentoxifylline and simvastatin on the apoptosis of triple-negative MDA-MB-231 breast cancer cells
    Castellanos-Esparza, Yessica Cristina
    Wu, Shuang
    Huang, Limin
    Buquet, Catherine
    Shen, Rong
    Sanchez-Gonzalez, Berenice
    Latorre, Ethel Awilda Garcia
    Boyer, Olivier
    Varin, Remi
    Jimenez-Zamudio, Luis Antonio
    Janin, Anne
    Vannier, Jean-Pierre
    Li, Hong
    Lu, He
    INTERNATIONAL JOURNAL OF ONCOLOGY, 2018, 52 (04) : 1246 - 1254
  • [6] Loss of MCL1 function sensitizes the MDA-MB-231 breast cancer cells to rh-TRAIL by increasing DR4 levels
    De Blasio, Anna
    Pratelli, Giovanni
    Drago-Ferrante, Rosa
    Saliba, Christian
    Baldacchino, Shawn
    Grech, Godfrey
    Tesoriere, Giovanni
    Scerri, Christian
    Vento, Renza
    Di Fiore, Riccardo
    JOURNAL OF CELLULAR PHYSIOLOGY, 2019, 234 (10) : 18432 - 18447
  • [7] Lapatinib as a Dual Tyrosine Kinase Inhibitor Unexpectedly Activates Akt in MDA-MB-231 Triple-Negative Breast Cancer Cells
    Kaboli, Parham Jabbarzadeh
    Ling, King-Hwa
    LETTERS IN DRUG DESIGN & DISCOVERY, 2020, 17 (08) : 1060 - 1063
  • [8] A Fungicide, Fludioxonil, Formed the Polyploid Giant Cancer Cells and Induced Metastasis and Stemness in MDA-MB-231 Triple-Negative Breast Cancer Cells
    Go, Ryeo-Eun
    Seong, Su-Min
    Choi, Youngdong
    Choi, Kyung-Chul
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (16)
  • [9] Cannabidiol Antiproliferative Effect in Triple-Negative Breast Cancer MDA-MB-231 Cells Is Modulated by Its Physical State and by IGF-1
    D'Aloia, Alessia
    Ceriani, Michela
    Tisi, Renata
    Stucchi, Simone
    Sacco, Elena
    Costa, Barbara
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (13)
  • [10] Disulfiram/Copper Induce Ferroptosis in Triple-Negative Breast Cancer Cell Line MDA-MB-231
    Chu, Meiran
    An, Xinglan
    Fu, Cong
    Yu, Hao
    Zhang, Daoyu
    Li, Qi
    Man, Xiaxia
    Dai, Xiangpeng
    Li, Ziyi
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2023, 28 (08):